Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dyslipidaemia in nephrotic syndrome: mechanisms and treatment

A Corrigendum to this article was published on 13 December 2017

This article has been updated

Key Points

  • Prolonged hyperlipidaemia in nephrotic syndrome is a major risk factor for multiple disease complications, including accelerated atherosclerosis, myocardial infarction, stroke, chronic kidney disease and thrombosis

  • Direct lipid-induced cellular injury to podocytes, mesangial cells and, potentially, renal tubular cells as a result of dyslipidaemia increasingly seems to have a role in the pathogenesis of nephrotic syndrome

  • Given the available evidence, we suggest that statins should be the first-line treatment for prolonged hyperlipidaemia in patients with nephrotic syndrome, given their efficacy in the treatment of other diseases and the fact that they are well tolerated

  • Alternative, less supported treatments include LDL apheresis, cholesterol absorption inhibitors, nicotinic acid and bile acid sequestrants; targeting proprotein convertase subtilisin/kexin type 9 is another potential treatment for hyperlipidaemia in patients with nephrotic syndrome

  • Treatment recommendations in children are limited by a lack of data for both the efficacy and the risk of pharmacological interventions

Abstract

Nephrotic syndrome is a highly prevalent disease that is associated with high morbidity despite notable advances in its treatment. Many of the complications of nephrotic syndrome, including the increased risk of atherosclerosis and thromboembolism, can be linked to dysregulated lipid metabolism and dyslipidaemia. These abnormalities include elevated plasma levels of cholesterol, triglycerides and the apolipoprotein B-containing lipoproteins VLDL and IDL; decreased lipoprotein lipase activity in the endothelium, muscle and adipose tissues; decreased hepatic lipase activity; and increased levels of the enzyme PCSK9. In addition, there is an increase in the plasma levels of immature HDL particles and reduced cholesterol efflux. Studies from the past few years have markedly improved our understanding of the molecular pathogenesis of nephrotic syndrome-associated dyslipidaemia, and also heightened our awareness of the associated exacerbated risks of cardiovascular complications, progressive kidney disease and thromboembolism. Despite the absence of clear guidelines regarding treatment, various strategies are being increasingly utilized, including statins, bile acid sequestrants, fibrates, nicotinic acid and ezetimibe, as well as lipid apheresis, which seem to also induce partial or complete clinical remission of nephrotic syndrome in a substantial percentage of patients. Future potential treatments will likely also include inhibition of PCSK9 using recently-developed anti-PCSK9 monoclonal antibodies and small inhibitory RNAs, as well as targeting newly identified molecular regulators of lipid metabolism that are dysregulated in nephrotic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The major pathways of lipid metabolism.
Figure 2: Pathophysiology of dyslipidaemia in nephrotic syndrome.
Figure 3: Mechanisms and consequences of lipid nephrotoxicity.

Similar content being viewed by others

Change history

  • 13 December 2017

    In the version of this article originally published online, the affiliations of the authors were incorrect. This error has now been corrected in the print and online versions.

References

  1. Greenbaum, L. A., Benndorf, R. & Smoyer, W. E. Childhood nephrotic syndrome — current and future therapies. Nat. Rev. Nephrol. 8, 445–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Hull, R. P. & Goldsmith, D. J. Nephrotic syndrome in adults. BMJ 336, 1185–1189 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clark, A. G. & Barratt, T. M. in Pediatric Nephrology (eds Barratt, T. M., Avner, E. D. & Harmon, W. E.) 731–747 (Lippincott Williams & Wilkins, 1998).

    Google Scholar 

  4. McEnery, P. T. & Strife, C. F. Nephrotic syndrome in childhood. Management and treatment in patients with minimal change disease, mesangial proliferation, or focal glomerulosclerosis. Pediatr. Clin. North Am. 89, 875–894 (1982).

    Article  Google Scholar 

  5. Nash, M. A., Edelmann, C. M. J., Bernstein, J. & Barnett, H. L. in Pediatric Kidney Disease (ed. Edelmann, C. M. J.) 1247–1266 (Little, 1992).

    Google Scholar 

  6. Ponticelli, C. et al. Can prolonged treatment improve the prognosis in adults with focal segmental glomerulosclerosis? Am. J. Kidney Dis 34, 618–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. MacHardy, N. et al. Management patterns of childhood-onset nephrotic syndrome. Pediatr. Nephrol. 24, 2193–2201 (2009).

    Article  PubMed  Google Scholar 

  8. Ding, W. Y. & Saleem, M. A. Current concepts of the podocyte in nephrotic syndrome. Kidney Res. Clin. Pract. 31, 87–93 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harris, R. C. & Ismail, N. Extrarenal complications of the nephrotic syndrome. Am. J. Kidney Dis 23, 477–497 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Cameron, J. S. The nephrotic syndrome and its complications. Am. J. Kidney Dis 10, 157–171 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Llach, F. Hypercoagulability, renal vein thrombosis, and other thrombotic complications of nephrotic syndrome. Kidney Int. 28, 429–439 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Rheault, M. N. et al. AKI in children hospitalized with nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 10, 2110–2118 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Azzawi, H. F., Obi, O. C., Safi, J. & Song, M. Nephrotic syndrome-induced thromboembolism in adults. Int. J. Crit. Illn. Inj. Sci. 6, 85–88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kerlin, B. A., Ayoob, R. & Smoyer, W. E. Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin. J. Am. Soc. Nephrol. 7, 513–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerlin, B. A., Haworth, K. & Smoyer, W. E. Venous thromboembolism in pediatric nephrotic syndrome. Pediatr. Nephrol. 29, 989–997 (2014).

    Article  PubMed  Google Scholar 

  16. Loscalzo, J. Venous thrombosis in the nephrotic syndrome. N. Engl. J. Med. 368, 956–958 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Vaziri, N. D. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int. 90, 41–52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Joven, J. et al. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N. Engl. J. Med. 323, 579–584 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, H., Tan, K. C., Shiu, S. W. & Wong, Y. Cellular cholesterol efflux to serum is impaired in diabetic nephropathy. Diabetes Metab. Res. Rev. 24, 617–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. de Sain- van der Velden, M. G. et al. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis. Kidney Int. 53, 994–1001 (1998).

    Article  Google Scholar 

  21. Garber, D. W., Gottlieb, B. A., Marsh, J. B. & Sparks, C. E. Catabolism of very low density lipoproteins in experimental nephrosis. J. Clin. Invest. 74, 1375–1383 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davies, R. W., Staprans, I., Hutchison, F. N. & Kaysen, G. A. Proteinuria, not altered albumin metabolism, affects hyperlipidemia in the nephrotic rat. J. Clin. Invest. 86, 600–605 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaziri, N. D. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am. J. Physiol. Renal Physiol. 290, F262–F272 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Mace, C. & Chugh, S. S. Nephrotic syndrome: components, connections, and angiopoietin-like 4-related therapeutics. J. Am. Soc. Nephrol. 25, 2393–2398 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B. & Smith, D. H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 164, 659–663 (2004).

    Article  PubMed  Google Scholar 

  26. Yeang, C., Gordts, P. L. & Tsimikas, S. Novel lipoprotein(a) catabolism pathway via apolipoprotein(a) recycling: Adding the plasminogen receptor PlgRKT to the list. Circ. Res. 120, 1050–1052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma, M., Redpath, G. M., Williams, M. J. & McCormick, S. P. Recycling of apolipoprotein(a) after PlgRKT-mediated endocytosis of lipoprotein(a). Circ. Res. 120, 1091–1102 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Moriarty, P. M., Varvel, S. A., Gordts, P. L., McConnell, J. P. & Tsimikas, S. Lipoprotein(a) mass levels increase significantly according to APOE genotype: an analysis of 431 239 patients. Arterioscler. Thromb. Vasc. Biol. 37, 580–588 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merkel, M., Eckel, R. H. & Goldberg, I. J. Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res. 43, 1997–2006 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Allan, C. M. et al. Mobility of “HSPG-bound” LPL explains how LPL is able to reach GPIHBP1 on capillaries. J. Lipid Res. 58, 216–225 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Davies, B. S. et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab. 12, 42–52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vaziri, N. D., Yuan, J., Ni, Z., Nicholas, S. B. & Norris, K. C. Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression. Clin. Exp. Nephrol. 16, 238–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Moorhead, J. F., Chan, M. K., El-Nahas, M. & Varghese, Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2, 1309–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Clement, L. C. et al. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat. Med. 20, 37–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Sukonina, V., Lookene, A., Olivecrona, T. & Olivecrona, G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl Acad. Sci. USA 103, 17450–17455 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lafferty, M. J., Bradford, K. C., Erie, D. A. & Neher, S. B. Angiopoietin-like protein 4 inhibition of lipoprotein lipase: evidence for reversible complex formation. J. Biol. Chem. 288, 28524–28534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liang, K. & Vaziri, N. D. Acquired VLDL receptor deficiency in experimental nephrosis. Kidney Int. 51, 1761–1765 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, Y. et al. Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats. Am. J. Physiol. Renal Physiol. 295, F662–F671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Donnell, M. P. Mechanisms and clinical importance of hypertriglyceridemia in the nephrotic syndrome. Kidney Int. 59, 380–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Kashyap, M. L. et al. Apolipoprotein CII and lipoprotein lipase in human nephrotic syndrome. Atherosclerosis 35, 29–40 (1980).

    Article  CAS  PubMed  Google Scholar 

  41. Ohta, T. & Matsuda, I. Lipid and apolipoprotein levels in patients with nephrotic syndrome. Clin. Chim. Acta 117, 133–143 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Nasr, S. H. et al. Novel type of renal amyloidosis derived from apolipoprotein-CII. J. Am. Soc. Nephrol. 28, 439–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Tentolouris, N. et al. High postprandial triglyceridemia in patients with type 2 diabetes and microalbuminuria. J. Lipid Res. 48, 218–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Di Bartolo, B., Scherer, D. J., Brown, A., Psaltis, P. J. & Nicholls, S. J. PCSK9 inhibitors in hyperlipidemia: current status and clinical outlook. BioDrugs 31, 167–174 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Morris, A. W. Nephrotic syndrome: PCSK9: a target for hypercholesterolaemia in nephrotic syndrome. Nat. Rev. Nephrol. 12, 510 (2016).

    Article  PubMed  Google Scholar 

  46. Pavlakou, P., Liberopoulos, E., Dounousi, E. & Elisaf, M. PCSK9 in chronic kidney disease. Int. Urol. Nephrol. 49, 1015–1024 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Haas, M. E. et al. The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 134, 61–72 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Warwick, G. L. et al. Low-density lipoprotein metabolism in the nephrotic syndrome. Metabolism 39, 187–192 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Vaziri, N. D. & Liang, K. H. Hepatic HMG-CoA reductase gene expression during the course of puromycin-induced nephrosis. Kidney Int. 48, 1979–1985 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Tsimikas, S. et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N. Engl. J. Med. 353, 46–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Wanner, C. et al. Elevated plasma lipoprotein(a) in patients with the nephrotic syndrome. Ann. Intern. Med. 119, 263–269 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Glass, C. K. & Witztum, J. L. Atherosclerosis: the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Gherardi, E., Rota, E., Calandra, S., Genova, R. & Tamborino, A. Relationship among the concentrations of serum lipoproteins and changes in their chemical composition in patients with untreated nephrotic syndrome. Eur. J. Clin. Invest. 7, 563–570 (1977).

    Article  CAS  PubMed  Google Scholar 

  54. Yvan-Charvet, L., Wang, N. & Tall, A. R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 30, 139–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Birjmohun, R. S. et al. High-density lipoprotein attenuates inflammation and coagulation response on endotoxin challenge in humans. Arterioscler. Thromb. Vasc. Biol. 27, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Murphy, A. J. et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28, 2071–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Yuhanna, I. S. et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 7, 853–857 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Muls, E., Rosseneu, M., Daneels, R., Schurgers, M. & Boelaert, J. Lipoprotein distribution and composition in the human nephrotic syndrome. Atherosclerosis 54, 225–237 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. Vaziri, N. D. HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat. Rev. Nephrol. 12, 37–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Pedigo, C. E. et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J. Clin. Invest. 126, 3336–3350 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jao, W., Lewy, P., Norris, S. H., Pollak, V. E. & Pirani, C. L. Lipoid nephrosis: a reassessment. Perspect. Nephrol. Hypertens. 1, 183–198 (1973).

    PubMed  Google Scholar 

  62. Muso, E. Beneficial effect of LDL-apheresis in refractory nephrotic syndrome. Clin. Exp. Nephrol. 18, 286–290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B. & Dawber, T. R. High density lipoprotein as a protective factor against coronary heart disease: the Framingham study. Am. J. Med. 62, 707–714 (1977).

    Article  CAS  PubMed  Google Scholar 

  64. Rye, K. A. & Barter, P. J. Cardioprotective functions of HDLs. J. Lipid Res. 55, 168–179 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Brunzell, J. D., Zambon, A. & Deeb, S. S. The effect of hepatic lipase on coronary artery disease in humans is influenced by the underlying lipoprotein phenotype. Biochim. Biophys. Acta 1821, 365–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01841684 (2015).

  70. Brooks, M. REVEAL: CETP inhibitor anacetrapib meets primary end point. Medscape Nephrology http://www.medscape.com/viewarticle/882173 (2017).

  71. Faraggiana, T. & Churg, J. Renal lipidoses: a review. Hum. Pathol. 18, 661–679 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. Ossoli, A. et al. Lipoprotein X causes renal disease in LCAT deficiency. PLoS ONE 11, e0150083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ferrans, V. J. & Fredrickson, D. S. The pathology of Tangier disease. A light and electron microscopic study. Am. J. Pathol. 78, 101–158 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lovric, S. et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J. Clin. Invest. 127, 912–928 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fornoni, A. et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl Med. 3, 85ra46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi, H. K. & Seeger, J. D. Glucocorticoid use and serum lipid levels in US adults: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 53, 528–535 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Leong, K. H., Koh, E. T., Feng, P. H. & Boey, M. L. Lipid profiles in patients with systemic lupus erythematosus. J. Rheumatol 21, 1264–1267 (1994).

    CAS  PubMed  Google Scholar 

  78. MacGregor, A. J. et al. Fasting lipids and anticardiolipin antibodies as risk factors for vascular disease in systemic lupus erythematosus. Ann. Rheum. Dis. 51, 152–155 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Macfarlane, D. P., Forbes, S. & Walker, B. R. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J. Endocrinol. 197, 189–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Vincenti, F., Jensik, S. C., Filo, R. S., Miller, J. & Pirsch, J. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: evidence for improved allograft survival at five years. Transplantation 73, 775–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Mayer, A. D. et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. Transplantation 64, 436–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Jackson, S. P. & Calkin, A. C. The clot thickens — oxidized lipids and thrombosis. Nat. Med. 13, 1015–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Podrez, E. A. et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat. Med. 13, 1086–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gyebi, L., Soltani, Z. & Reisin, E. Lipid nephrotoxicity: new concept for an old disease. Curr. Hypertens. Rep. 14, 177–181 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Thomas, M. E., Harris, K. P., Walls, J., Furness, P. N. & Brunskill, N. J. Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria. Am. J. Physiol. Renal Physiol. 283, F640–F647 (2002).

    Article  PubMed  Google Scholar 

  86. Kamijo, A. et al. Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int. 62, 1628–1637 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Schermer, B. & Benzing, T. Lipid-protein interactions along the slit diaphragm of podocytes. J. Am. Soc. Nephrol. 20, 473–478 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Schlondorff, D. Cellular mechanisms of lipid injury in the glomerulus. Am. J. Kidney Dis. 22, 72–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Nishida, Y., Oda, H. & Yorioka, N. Effect of lipoproteins on mesangial cell proliferation. Kidney Int. Suppl. 71, S51–S53 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Stevenson, F. T., Shearer, G. C. & Atkinson, D. N. Lipoprotein-stimulated mesangial cell proliferation and gene expression are regulated by lipoprotein lipase. Kidney Int. 59, 2062–2068 (2001).

    CAS  PubMed  Google Scholar 

  91. Shearer, G. C. et al. Hypoalbuminemia and proteinuria contribute separately to reduced lipoprotein catabolism in the nephrotic syndrome. Kidney Int. 59, 179–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Zhong, S. et al. Inflammatory stress exacerbated mesangial foam cell formation and renal injury via disrupting cellular cholesterol homeostasis. Inflammation 38, 959–971 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Freedman, B. I. et al. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J. Am. Soc. Nephrol. 21, 1422–1426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Debiec, H. & Ronco, P. PLA2R autoantibodies and PLA2R glomerular deposits in membranous nephropathy. N. Engl. J. Med. 364, 689–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Beck, L. H. Jr et al. M-Type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fornoni, A., Merscher, S. & Kopp, J. B. Lipid biology of the podocyte — new perspectives offer new opportunities. Nat. Rev. Nephrol. 10, 379–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chung, J. J. et al. Albumin-associated free fatty acids induce macropinocytosis in podocytes. J. Clin. Invest. 125, 2307–2316 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Allison, S. J. Free fatty acid-induced macropinocytosis in podocytes. Nat. Rev. Nephrol. 11, 386 (2015).

    Article  PubMed  Google Scholar 

  101. Agrawal, S., Guess, A. J., Chanley, M. A. & Smoyer, W. E. Albumin-induced podocyte injury and protection are associated with regulation of COX-2. Kidney Int. 86, 1150–1160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sieber, J. et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal Physiol. 299, F821–F829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kampe, K., Sieber, J., Orellana, J. M., Mundel, P. & Jehle, A. W. Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2. Am. J. Physiol. Renal Physiol. 306, F401–F409 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Martinez-Garcia, C. et al. Renal lipotoxicity-associated inflammation and insulin resistance affects actin cytoskeleton organization in podocytes. PLoS ONE 10, e0142291 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Eddy, A. A. & Michael, A. F. Acute tubulointerstitial nephritis associated with aminonucleoside nephrosis. Kidney Int. 33, 14–23 (1988).

    Article  CAS  PubMed  Google Scholar 

  106. Eddy, A. A., McCulloch, L., Liu, E. & Adams, J. A relationship between proteinuria and acute tubulointerstitial disease in rats with experimental nephrotic syndrome. Am. J. Pathol. 138, 1111–1123 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Iwai, T. et al. Stearoyl-CoA desaturase-1 protects cells against lipotoxicity-mediated apoptosis in proximal tubular cells. Int. J. Mol. Sci. 17, E1868 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Li, C. et al. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. Am. J. Physiol. Renal Physiol. 310, F351–F363 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Zuo, N., Zheng, X., Liu, H. & Ma, X. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB. Int. J. Clin. Exp. Pathol. 8, 10653–10661 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ruggiero, C. et al. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am. J. Physiol. Renal Physiol. 306, F896–F906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sacks, F. M. et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N. Engl. J. Med. 335, 1001–1009 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Reiner, Z. et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32, 1769–1818 (2011).

    Article  PubMed  Google Scholar 

  113. Bagga, A., Sharma, A. & Srivastava, R. N. Inefficacy of pefloxacin in steroid-responsive nephrotic syndrome. Pediatr. Nephrol. 9, 793–794 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Keane, W. F. Lipids and the kidney. Kidney Int. 46, 910–920 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Culleton, B. F. et al. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int. 56, 2214–2219 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Falk, R. J. in Acute Renal Failure: A Companion to Brenner & Rector's The Kidney (eds Molitoris, B. A. & Finn, W.) (Saunders, 2001).

    Google Scholar 

  117. Kasiske, B. L. Hyperlipidemia in patients with chronic renal disease. Am. J. Kidney Dis. 32, S142–S156 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Ordonez, J. D., Hiatt, R. A., Killebrew, E. J. & Fireman, B. H. The increased risk of coronary heart disease associated with nephrotic syndrome. Kidney Int. 44, 638–642 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Suryawanshi, S. P., Das, B. & Patnaik, A. N. Myocardial infarction in children: two interesting cases. Ann. Pediatr. Cardiol. 4, 81–83 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Silva, J. M. et al. Premature acute myocardial infarction in a child with nephrotic syndrome. Pediatr. Nephrol. 17, 169–172 (2002).

    Article  PubMed  Google Scholar 

  121. D'Amico, G. et al. Effect of vegetarian soy diet on hyperlipidaemia in nephrotic syndrome. Lancet 339, 1131–1134 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Gentile, M. G. et al. Treatment of proteinuric patients with a vegetarian soy diet and fish oil. Clin. Nephrol. 40, 315–320 (1993).

    CAS  PubMed  Google Scholar 

  123. Bell, S., Cooney, J., Packard, C. J., Caslake, M. J. & Deighan, C. J. The effect of omega-3 fatty acids on the atherogenic lipoprotein phenotype in patients with nephrotic range proteinuria. Clin. Nephrol. 77, 445–453 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Hall, A. V. et al. Omega-3 fatty acid supplementation in primary nephrotic syndrome: effects on plasma lipids and coagulopathy. J. Am. Soc. Nephrol. 3, 1321–1329 (1992).

    CAS  PubMed  Google Scholar 

  125. Rabelink, A. J., Hene, R. J., Erkelens, D. W., Joles, J. A. & Koomans, H. A. Effects of simvastatin and cholestyramine on lipoprotein profile in hyperlipidaemia of nephrotic syndrome. Lancet 2, 1335–1338 (1988).

    Article  CAS  PubMed  Google Scholar 

  126. Thomas, M. E. et al. Simvastatin therapy for hypercholesterolemic patients with nephrotic syndrome or significant proteinuria. Kidney Int. 44, 1124–1129 (1993).

    Article  CAS  PubMed  Google Scholar 

  127. M., S. et al. Evaluation of effects of lovastatin on hyercholesterolaemia and renl functions in nephrotic syndrome. Indian Acad. Clin. Med. 5, 143–146 (2004).

    Google Scholar 

  128. Gheith, O. A. et al. Impact of treatment of dyslipidemia on renal function, fat deposits and scarring in patients with persistent nephrotic syndrome. Nephron 91, 612–619 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Gheith, O., Sheashaa, H., Abdelsalam, M., Shoeir, Z. & Sobh, M. Efficacy and safety of Monascus purpureus Went rice in subjects with secondary hyperlipidemia. Clin. Exp. Nephrol. 12, 189–194 (2008).

    Article  PubMed  Google Scholar 

  130. Olbricht, C. J., Wanner, C., Thiery, J. & Basten, A. Simvastatin in nephrotic syndrome. Kidney Int. Suppl. 71, S113–S116 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Kong, X. et al. Lipid-lowering agents for nephrotic syndrome. Cochrane Database Syst. Rev. 12, CD005425 (2013).

    Google Scholar 

  132. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Valeri, A., Gelfand, J., Blum, C. & Appel, G. B. Treatment of the hyperlipidemia of the nephrotic syndrome: a controlled trial. Am. J. Kidney Dis. 8, 388–396 (1986).

    Article  CAS  PubMed  Google Scholar 

  134. Groggel, G. C., Cheung, A. K., Ellis-Benigni, K. & Wilson, D. E. Treatment of nephrotic hyperlipoproteinemia with gemfibrozil. Kidney Int. 36, 266–271 (1989).

    Article  CAS  PubMed  Google Scholar 

  135. Buyukcelik, M. et al. The effects of gemfibrozil on hyperlipidemia in children with persistent nephrotic syndrome. Turk. J. Pediatr. 44, 40–44 (2002).

    PubMed  Google Scholar 

  136. Kamanna, V. S. & Kashyap, M. L. Mechanism of action of niacin. Am. J. Cardiol. 101, 20B–26B (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Phan, B. A., Dayspring, T. D. & Toth, P. P. Ezetimibe therapy: mechanism of action and clinical update. Vasc. Health Risk Manag. 8, 415–427 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kastelein, J. J. et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med. 358, 1431–1443 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Coleman, J. E. & Watson, A. R. Hyperlipidaemia, diet and simvastatin therapy in steroid-resistant nephrotic syndrome of childhood. Pediatr. Nephrol. 10, 171–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Sanjad, S. A., al-Abbad, A. & al-Shorafa, S. Management of hyperlipidemia in children with refractory nephrotic syndrome: the effect of statin therapy. J. Pediatr. 130, 470–474 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Hattori, M. et al. A combined low-density lipoprotein apheresis and prednisone therapy for steroid-resistant primary focal segmental glomerulosclerosis in children. Am. J. Kidney Dis. 42, 1121–1130 (2003).

    Article  PubMed  Google Scholar 

  142. Muso, E. et al. Low density lipoprotein apheresis therapy for steroid-resistant nephrotic syndrome. Kansai-FGS-Apheresis Treatment (K-FLAT) Study Group. Kidney Int. Suppl. 71, S122–S125 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Muso, E. et al. Immediate therapeutic efficacy of low-density lipoprotein apheresis for drug-resistant nephrotic syndrome: evidence from the short-term results from the POLARIS Study. Clin. Exp. Nephrol. 19, 379–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Muso, E. et al. A prospective observational survey on the long-term effect of LDL apheresis on drug-resistant nephrotic syndrome. Nephron Extra 5, 58–66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Suzuki, H., Tsukamoto, T. & Muso, E. Rituximab-resistant nephrotic syndrome with successful induction of remission by low-density lipoprotein apheresis. Ther. Apher. Dial. 21, 295–296 (2017).

    Article  PubMed  Google Scholar 

  146. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02314442(2015).

  147. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, S. & Vaziri, N. D. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol. Dial. Transplant. 29, 538–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03004001 (2017).

  150. Awanami, Y. et al. Successful treatment of a patient with refractory nephrotic syndrome with PCSK9 inhibitors: a case report. BMC Nephrol. 18, 221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kazi, D. S. et al. Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. JAMA 316, 743–753 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Vaziri, N. D. & Liang, K. H. Acyl-coenzyme A:cholesterol acyltransferase inhibition ameliorates proteinuria, hyperlipidemia, lecithin-cholesterol acyltransferase, SRB-1, and low-denisty lipoprotein receptor deficiencies in nephrotic syndrome. Circulation 110, 419–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Tardif, J. C. et al. Effects of the acyl coenzyme A: cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 110, 3372–3377 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02235857 (2016).

  155. [No authors listed.] Chapter 2: General principles in the management of glomerular disease. Kidney Int. Suppl. 2, 156–162 (2012).

  156. Lechner, B. L., Bockenhauer, D., Iragorri, S., Kennedy, T. L. & Siegel, N. J. The risk of cardiovascular disease in adults who have had childhood nephrotic syndrome. Pediatr. Nephrol. 19, 744–748 (2004).

    Article  PubMed  Google Scholar 

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00004466 (2017).

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01845428 (2017).

Download references

Acknowledgements

The authors acknowledge the expert assistance of L. Feurer (Center for Clinical and Translational Research, The Research Institute at Nationwide Childrens Hospital, Columbus, Ohio,USA) in creating initial drafts of the figures in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, and writing, reviewing and editing the article before submission.

Corresponding author

Correspondence to William E. Smoyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Sialylation

Addition of sialic acid groups onto molecules such as oligosaccharides and carbohydrates.

Glycocalyx

Layer of glycoproteins and sugar moieties surrounding the outer surface of the cell membrane of some bacteria, epithelia and other cells.

Tangier disease

A rare inherited disorder characterized by significantly reduced levels of HDL in the blood.

Lipid raft

A subdomain of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids.

Lipid apheresis

A non-surgical therapy and a form of apheresis that removes LDL from a patient's blood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Zaritsky, J., Fornoni, A. et al. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14, 57–70 (2018). https://doi.org/10.1038/nrneph.2017.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing