Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease

Abstract

Neurostimulation of the subthalamic nucleus (STN) is an established treatment for motor symptoms in advanced Parkinson disease (PD), although concerns exist regarding the safety of this therapy in terms of cognitive and psychiatric adverse effects. The basal ganglia are considered to be part of distributed cortico-subcortical networks that are involved in the selection, facilitation and inhibition of movements, emotions, behaviors and thoughts. The STN has a central role in these networks, probably providing a global 'no-go' signal. The behavioral and cognitive effects observed following STN high-frequency stimulation (HFS) probably reflect the intrinsic role of this nucleus in nonmotor functional domains. Nevertheless, postoperative behavioral changes are seldom caused by such stimulation alone. PD is a progressive neurodegenerative disorder with motor, cognitive, behavioral and autonomic symptoms. The pattern of neurodegeneration and expression of these symptoms are highly variable across individuals. The preoperative neuropsychiatric state can be further complicated by sensitization phenomena resulting from long-term dopaminergic treatment, which include impulse control disorders, punding, and addictive behaviors (dopamine dysregulation syndrome). Finally, personality traits, the social environment, culture and learned behaviors might be important determinants explaining why behavioral symptoms differ between patients after surgery. Here, we summarize the neuropsychiatric changes observed after STN HFS and try to disentangle their various etiologies.

Key Points

  • The basal ganglia modulate the activity of distinct frontal cortical areas—such as motor and premotor cortices, dorsolateral prefrontal cortex and anterior cingulate cortex—via parallel corticobasal ganglia–thalamocortical loops

  • Clinical findings support the view that the basal ganglia are involved in the selection, facilitation and inhibition of movements, emotions, behaviors and thoughts

  • The subthalamic nucleus (STN) has a central regulatory role in cortico-subcortical networks involving the basal ganglia, providing a global 'no-go' signal

  • Dopaminergic medication and high-frequency stimulation of the STN act synergistically on the various basal ganglia loops

  • Apathy and depression in Parkinson disease (PD) might reflect hypodopaminergic states of the limbic and associative corticobasal ganglia–thalamocortical loops

  • Sensitization and dopaminergic or electrical overstimulation of the limbic and associative corticobasal ganglia–thalamocortical loops probably underlie the development of impulsivity and mania in PD

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The basal ganglia form anatomically and functionally segregated neuronal circuits with thalamic nuclei and frontal cortical areas.
Figure 2: Neural network model of the striato-thalamocortical circuit.
Figure 3: Behavioral effects of dopaminergic medication or high-frequency stimulation.

Similar content being viewed by others

References

  1. Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 355, 896–908 (2006).

    CAS  PubMed  Google Scholar 

  2. Weaver, F. M. et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301, 63–73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Voon, V., Kubu, C., Krack, P., Houeto, J. L. & Troster, A. I. Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov. Disord. 21 (Suppl. 14), S305–S327 (2006).

    PubMed  Google Scholar 

  4. Parsons, T. D., Rogers, S. A., Braaten, A. J., Woods, S. P. & Troster, A. I. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson's disease: a meta-analysis. Lancet Neurol. 5, 578–588 (2006).

    PubMed  Google Scholar 

  5. Temel, Y. et al. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat. Disord. 12, 265–272 (2006).

    PubMed  Google Scholar 

  6. Witt, K. et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol. 7, 605–614 (2008).

    PubMed  Google Scholar 

  7. Deuschl, G. et al. Deep brain stimulation: postoperative issues. Mov. Disord. 21 (Suppl. 14), S219–S237 (2006).

    PubMed  Google Scholar 

  8. Wilson, S., Bladin, P. & Saling, M. The “burden of normality”: concepts of adjustment after surgery for seizures. J. Neurol. Neurosurg. Psychiatry 70, 649–656 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. DeLong, M. R. & Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24 (2007).

    PubMed  Google Scholar 

  10. Parent, A. & Hazrati, L. N. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and exteral pallidum in basal ganglia circuity. Brain Res. Rev. 20, 128–154 (1995).

    CAS  PubMed  Google Scholar 

  11. Nambu, A., Tokuno, H. & Takada, M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci. Res. 43, 111–117 (2002).

    PubMed  Google Scholar 

  12. Alexander, G. E. & Crutcher, M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271 (1990).

    CAS  PubMed  Google Scholar 

  13. Alexander, G. E., Crutcher, M. D. & DeLong, M. R. Basal ganglia–thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119–146 (1990).

    CAS  PubMed  Google Scholar 

  14. Bevan, M. D., Atherton, J. F. & Baufreton, J. Cellular principles underlying normal and pathological activity in the subthalamic nucleus. Curr. Opin. Neurobiol. 16, 621–628 (2006).

    CAS  PubMed  Google Scholar 

  15. Romanelli, P., Esposito, V., Schaal, D. W. & Heit, G. Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res. Brain Res. Rev. 48, 112–128 (2005).

    PubMed  Google Scholar 

  16. Frank, M. J. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J. Cogn. Neurosci. 17, 51–72 (2005).

    PubMed  Google Scholar 

  17. Frank, M. J. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 19, 1120–1136 (2006).

    PubMed  Google Scholar 

  18. Schultz, W. Behavioral dopamine signals. Trends Neurosci. 30, 203–210 (2007).

    CAS  PubMed  Google Scholar 

  19. Frank, M. J., Samanta, J., Moustafa, A. A. & Sherman, S. J. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318, 1309–1312 (2007).

    CAS  PubMed  Google Scholar 

  20. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    CAS  PubMed  Google Scholar 

  21. Bergman, H., Wichmann, T. & DeLong, M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438 (1990).

    CAS  PubMed  Google Scholar 

  22. Marsden, C. D. & Obeso, J. A. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain 117, 877–897 (1994).

    PubMed  Google Scholar 

  23. Bar-Gad, I., Havazelet-Heimer, G., Goldberg, J. A., Ruppin, E. & Bergman, H. Reinforcement-driven dimensionality reduction—a model for information processing in the basal ganglia. J. Basic Clin. Physiol. Pharmacol. 11, 305–320 (2000).

    CAS  PubMed  Google Scholar 

  24. Hammond, C., Bergman, H. & Brown, P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci. 30, 357–364 (2007).

    CAS  PubMed  Google Scholar 

  25. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    PubMed  Google Scholar 

  26. Voon, V. et al. Chronic dopaminergic stimulation in Parkinson's disease: from dyskinesias to impulse control disorders. Lancet Neurol. 8, 1140–1149 (2009).

    CAS  PubMed  Google Scholar 

  27. Evans, A. H. et al. Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann. Neurol. 59, 852–858 (2006).

    CAS  PubMed  Google Scholar 

  28. Voon, V. et al. Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron 65, 135–142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaudhuri, K. R. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 464–474 (2009).

    CAS  PubMed  Google Scholar 

  30. Muslimovic, D., Post, B., Speelman, J. D. & Schmand, B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65, 1239–1245 (2005).

    PubMed  Google Scholar 

  31. Muslimovic, D., Post, B., Speelman, J. D., De Haan, R. J. & Schmand, B. Cognitive decline in Parkinson's disease: a prospective longitudinal study. J. Int. Neuropsychol. Soc. 15, 426–437 (2009).

    PubMed  Google Scholar 

  32. Kulisevsky, J. Role of dopamine in learning and memory: implications for the treatment of cognitive dysfunction in patients with Parkinson's disease. Drugs Aging 16, 365–379 (2000).

    CAS  PubMed  Google Scholar 

  33. Woods, S. P. et al. Statistical power of studies examining the cognitive effects of subthalamic nucleus deep brain stimulation in Parkinson's disease. Clin. Neuropsychol. 20, 27–38 (2006).

    PubMed  Google Scholar 

  34. Alegret, M. et al. Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch. Neurol. 58, 1223–1227 (2001).

    CAS  PubMed  Google Scholar 

  35. Daniele, A. et al. Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 74, 175–182 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dujardin, K., Defebvre, L., Krystkowiak, P., Blond, S. & Destée, A. Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson's disease. J. Neurol. 248, 603–611 (2001).

    CAS  PubMed  Google Scholar 

  37. Morrison, C. E. et al. Neuropsychological functioning following bilateral subthalamic nucleus stimulation in Parkinson's disease. Arch. Clin. Neuropsychol. 19, 165–181 (2004).

    CAS  PubMed  Google Scholar 

  38. Smeding, H. M. et al. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology 66, 1830–1836 (2006).

    CAS  PubMed  Google Scholar 

  39. Trepanier, L. L., Kumar, R., Lozano, A. M., Lang, A. E. & Saint-Cyr, J. A. Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson's disease. Brain Cogn. 42, 324–347 (2000).

    CAS  PubMed  Google Scholar 

  40. Zahodne, L. B. et al. Cognitive declines one year after unilateral deep brain stimulation surgery in Parkinson's disease: a controlled study using reliable change. Clin. Neuropsychol. 23, 385–405 (2009).

    PubMed  Google Scholar 

  41. Saint-Cyr, J. A., Trepanier, L. L., Kumar, R., Lozano, A. M. & Lang, A. E. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain 123, 2091–2108 (2000).

    PubMed  Google Scholar 

  42. Alegret, M. et al. Comparative cognitive effects of bilateral subthalamic stimulation and subcutaneous continuous infusion of apomorphine in Parkinson's disease. Mov. Disord. 19, 1463–1469 (2004).

    PubMed  Google Scholar 

  43. Ardouin, C. et al. Bilateral subthalamic or pallidal stimulation for Parkinson's disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann. Neurol. 46, 217–223 (1999).

    CAS  PubMed  Google Scholar 

  44. Pillon, B. et al. Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson's disease. Neurology 55, 411–418 (2000).

    CAS  PubMed  Google Scholar 

  45. Aybek, S. et al. Long-term cognitive profile and incidence of dementia after STN-DBS in Parkinson's disease. Mov. Disord. 22, 974–981 (2007).

    PubMed  Google Scholar 

  46. Smeding, H. M., Speelman, J. D., Huizenga, H. M., Schuurman, P. R. & Schmand, B. Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson disease. J. Neurol. Neurosurg. Psychiatry doi:10.1136/jnnp.2007.140012.

    Google Scholar 

  47. Uc, E. Y. et al. Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology 73, 1469–1477 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kempster, P. A. et al. Patterns of levodopa response in Parkinson's disease: a clinico-pathological study. Brain 130, 2123–2128 (2007).

    CAS  PubMed  Google Scholar 

  49. Kempster, P. A., O'Sullivan, S. S., Holton, J. L., Revesz, T. & Lees, A. J. Relationships between age and late progression of Parkinson's disease: a clinico-pathological study. Brain 133, 1755–1762 (2010).

    PubMed  Google Scholar 

  50. York, M. K., Wilde, E. A., Simpson, R. & Jankovic, J. Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location. J. Neurol. Sci. 287, 159–171 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Pedersen, K. F., Alves, G., Aarsland, D. & Larsen, J. P. Occurrence and risk factors for apathy in Parkinson disease: a 4-year prospective longitudinal study. J. Neurol. Neurosurg. Psychiatry 80, 1279–1282 (2009).

    CAS  PubMed  Google Scholar 

  52. Jahanshahi, M. et al. The impact of deep brain stimulation on executive function in Parkinson's disease. Brain 123, 1142–1154 (2000).

    PubMed  Google Scholar 

  53. Schroeder, U. et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 125, 1995–2004 (2002).

    CAS  PubMed  Google Scholar 

  54. Witt, K. et al. Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease. Arch. Neurol. 61, 697–700 (2004).

    PubMed  Google Scholar 

  55. Campbell, M. C. et al. Neural correlates of STN DBS-induced cognitive variability in Parkinson disease. Neuropsychologia 46, 3162–3169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Baunez, C. & Robbins, T. W. Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur. J. Neurosci. 9, 2086–2099 (1997).

    CAS  PubMed  Google Scholar 

  57. Eagle, D. M. & Baunez, C. Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci. Biobehav. Rev. 34, 50–72 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).

    CAS  PubMed  Google Scholar 

  59. Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J. & Poldrack, R. A. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 27, 3743–3752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, C. S., Yan, P., Sinha, R. & Lee, T. W. Subcortical processes of motor response inhibition during a stop signal task. Neuroimage 41, 1352–1363 (2008).

    PubMed  Google Scholar 

  62. Ray, N. J. et al. The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson's disease. Neuropsychologia 47, 2828–2834 (2009).

    CAS  PubMed  Google Scholar 

  63. van den Wildenberg, W. P. et al. Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson's disease. J. Cogn. Neurosci. 18, 626–636 (2006).

    PubMed  Google Scholar 

  64. Ballanger, B. et al. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann. Neurol. 66, 817–824 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Witt, K., Kopper, F., Deuschl, G. & Krack, P. Subthalamic nucleus influences spatial orientation in extra-personal space. Mov. Disord. 21, 354–361 (2006).

    PubMed  Google Scholar 

  66. Appleby, B. S., Duggan, P. S., Regenberg, A. & Rabins, P. V. Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years' experience. Mov. Disord. 22, 1722–1728 (2007).

    PubMed  Google Scholar 

  67. Mallet, L. et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc. Natl Acad. Sci. USA 104, 10661–10666 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Herzog, J. et al. Manic episode with psychotic symptoms induced by subthalamic nucleus stimulation in a patient with Parkinson's disease. Mov. Disord. 18, 1382–1384 (2003).

    PubMed  Google Scholar 

  69. Mandat, T. S., Hurwitz, T. & Honey, C. R. Hypomania as an adverse effect of subthalamic nucleus stimulation: report of two cases. Acta Neurochir. (Wien) 148, 895–897 (2006).

    CAS  Google Scholar 

  70. Raucher-Chene, D., Charrel, C. L., de Maindreville, A. D. & Limosin, F. Manic episode with psychotic symptoms in a patient with Parkinson's disease treated by subthalamic nucleus stimulation: improvement on switching the target. J. Neurol. Sci. 273, 116–117 (2008).

    PubMed  Google Scholar 

  71. Coenen, V. A. et al. Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson's disease. Neurosurgery 64, 1106–1114 (2009).

    PubMed  Google Scholar 

  72. Waraczynski, M. A. The central extended amygdala network as a proposed circuit underlying reward valuation. Neurosci. Biobehav. Rev. 30, 472–496 (2006).

    PubMed  Google Scholar 

  73. Funkiewiez, A. et al. Acute psychotropic effects of bilateral subthalamic nucleus stimulation and levodopa in Parkinson's disease. Mov. Disord. 18, 524–530 (2003).

    PubMed  Google Scholar 

  74. Bejjani, B. P. et al. Levodopa-induced dyskinesias in Parkinson's disease: is sensitization reversible? Ann. Neurol. 47, 655–658 (2000).

    CAS  PubMed  Google Scholar 

  75. Berney, A. et al. Effect on mood of subthalamic DBS for Parkinson's disease: a consecutive series of 24 patients. Neurology 59, 1427–1429 (2002).

    CAS  PubMed  Google Scholar 

  76. Houeto, J. L. et al. Behavioural disorders, Parkinson's disease and subthalamic stimulation. J. Neurol. Neurosurg. Psychiatry 72, 701–707 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Reijnders, J. S., Ehrt, U., Weber, W. E., Aarsland, D. & Leentjens, A. F. A systematic review of prevalence studies of depression in Parkinson's disease. Mov. Disord. 23, 183–189 (2008).

    PubMed  Google Scholar 

  78. Castelli, L. et al. Chronic deep brain stimulation of the subthalamic nucleus for Parkinson's disease: effects on cognition, mood, anxiety and personality traits. Eur. Neurol. 55, 136–144 (2006).

    CAS  PubMed  Google Scholar 

  79. Krack, P. et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med. 349, 1925–1934 (2003).

    CAS  PubMed  Google Scholar 

  80. Kaiser, I., Kryspin-Exner, I., Brucke, T., Volc, D. & Alesch, F. Long-term effects of STN DBS on mood: psychosocial profiles remain stable in a 3-year follow-up. BMC Neurol. 8, 43 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Voon, V., Moro, E., Saint-Cyr, J. A., Lozano, A. M. & Lang, A. E. Psychiatric symptoms following surgery for Parkinson's disease with an emphasis on subthalamic stimulation. Adv. Neurol. 96, 130–147 (2005).

    PubMed  Google Scholar 

  82. Witt, K. et al. Differential effects of L-dopa and subthalamic stimulation on depressive symptoms and hedonic tone in Parkinson's disease. J. Neuropsychiatry Clin. Neurosci. 18, 397–401 (2006).

    CAS  PubMed  Google Scholar 

  83. Tommasi, G. et al. Transient acute depressive state induced by subthalamic region stimulation. J. Neurol. Sci. 273, 135–138 (2008).

    PubMed  Google Scholar 

  84. Bejjani, B. P. et al. Transient acute depression induced by high-frequency deep-brain stimulation. N. Engl. J. Med. 340, 1476–1480 (1999).

    CAS  PubMed  Google Scholar 

  85. Okun, M. S. et al. Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann. Neurol. 65, 586–595 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Schneider, F. et al. Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Arch. Gen. Psychiatry 60, 296–302 (2003).

    PubMed  Google Scholar 

  87. Maricle, R. A., Nutt, J. G., Valentine, R. J. & Carter, J. H. Dose-response relationship of levodopa with mood and anxiety in fluctuating Parkinson's disease: a double-blind, placebo-controlled study. Neurology 45, 1757–1760 (1995).

    CAS  PubMed  Google Scholar 

  88. Biseul, I. et al. Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson's disease. Neuropsychologia 43, 1054–1059 (2005).

    PubMed  Google Scholar 

  89. Vicente, S. et al. Subthalamic nucleus stimulation affects subjective emotional experience in Parkinson's disease patients. Neuropsychologia 47, 1928–1937 (2009).

    PubMed  Google Scholar 

  90. Aarsland, D. et al. The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 80, 928–930 (2009).

    CAS  PubMed  Google Scholar 

  91. Bodi, N. et al. Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson's patients. Brain 132, 2385–2395 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Rylander, G. Psychoses and the punding and choreiform syndromes in addiction to central stimulant drugs. Psychiatr. Neurol. Neurochir. 75, 203–212 (1972).

    CAS  PubMed  Google Scholar 

  93. Evans, A. H. et al. Punding in Parkinson's disease: its relation to the dopamine dysregulation syndrome. Mov. Disord. 19, 397–405 (2004).

    PubMed  Google Scholar 

  94. Weintraub, D. Dopamine and impulse control disorders in Parkinson's disease. Ann. Neurol. 64 (Suppl. 2), S93–S100 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Romito, L. M. et al. Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson's disease. Mov. Disord. 17, 1371–1374 (2002).

    PubMed  Google Scholar 

  96. Witt, K., Krack, P. & Deuschl, G. Change in artistic expression related to subthalamic stimulation. J. Neurol. 253, 955–956 (2006).

    CAS  PubMed  Google Scholar 

  97. Smeding, H. M. et al. Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. J. Neurol. Neurosurg. Psychiatry 78, 517–519 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ardouin, C. et al. Pathological gambling in Parkinson's disease improves on chronic subthalamic nucleus stimulation. Mov. Disord. 21, 1941–1946 (2006).

    PubMed  Google Scholar 

  99. Lim, S. Y. et al. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson's disease. J. Clin. Neurosci. 16, 1148–1152 (2009).

    CAS  PubMed  Google Scholar 

  100. Soulas, T. et al. Attempted and completed suicides after subthalamic nucleus stimulation for Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 79, 952–954 (2008).

    CAS  PubMed  Google Scholar 

  101. Voon, V. et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson's disease. Brain 131, 2720–2728 (2008).

    PubMed  PubMed Central  Google Scholar 

  102. Rodrigues, A. M. et al. Suicide attempts after subthalamic nucleus stimulation for Parkinson's disease. Eur. Neurol. 63, 176–179 (2010).

    PubMed  Google Scholar 

  103. Myslobodsky, M., Lalonde, F. M. & Hicks, L. Are patients with Parkinson's disease suicidal? J. Geriatr. Psychiatry Neurol. 14, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  104. Frank, M. J., Seeberger, L. C. & O'Reilly, R. C. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943 (2004).

    CAS  PubMed  Google Scholar 

  105. Funkiewiez, A. et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 75, 834–839 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Pluck, G. C. & Brown, R. G. Apathy in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 73, 636–642 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chatterjee, A. & Fahn, S. Methylphenidate treats apathy in Parkinson's disease. J. Neuropsychiatry Clin. Neurosci. 14, 461–462 (2002).

    PubMed  Google Scholar 

  108. Marin, R. S., Fogel, B. S., Hawkins, J., Duffy, J. & Krupp, B. Apathy: a treatable syndrome. J. Neuropsychiatry Clin. Neurosci. 7, 23–30 (1995).

    CAS  PubMed  Google Scholar 

  109. Drapier, D. et al. Does subthalamic nucleus stimulation induce apathy in Parkinson's disease? J. Neurol. 253, 1083–1091 (2006).

    CAS  PubMed  Google Scholar 

  110. Le Jeune, F. et al. Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology 73, 1746–1751 (2009).

    CAS  PubMed  Google Scholar 

  111. Czernecki, V. et al. Does bilateral stimulation of the subthalamic nucleus aggravate apathy in Parkinson's disease? J. Neurol. Neurosurg. Psychiatry 76, 775–779 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the German Ministry of Research through the Network of European Funding for Neuroscience Research (ERANET-NEURON) scheme (grant #01EW0902).

Author information

Authors and Affiliations

Authors

Contributions

J. Volkmann, C. Daniels and K. Witt all researched the data for the article, provided substantial contributions to discussions of the content, and contributed equally to writing the article and to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jens Volkmann.

Ethics declarations

Competing interests

J. Volkmann has served as a consultant for and has received honoraria for speaking from Medtronic. He has also received research support from this company. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkmann, J., Daniels, C. & Witt, K. Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol 6, 487–498 (2010). https://doi.org/10.1038/nrneurol.2010.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing