Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Update on molecular findings, management and outcome in low-grade gliomas

Abstract

Low-grade infiltrating gliomas in adults include diffuse astrocytoma, oligoastrocytoma and oligodendroglioma. The current gold standard diagnosis of these tumors relies on histological classification; however, emerging molecular abnormalities discovered in these tumors are playing an increasingly prominent part in the process of tumor diagnosis and, consequently, patient management. The frequency and clinical importance of tumor protein p53 (TP53) abnormalities, deletions involving chromosomes 1p and 19q, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, abnormalities in the PTEN tumor suppressor gene and the BRAF oncogene, and isocitrate dehydrogenase (IDH) mutations have become better defined. Molecular markers have not, historically, had an important role in determining the course of treatment for patients with low-grade gliomas, but ongoing phase III clinical trials incorporate 1p deletion or 1p19q codeletion status—and future trials plan to incorporate MGMT promoter methylation status—as stratification factors. Future trials will need to incorporate IDH mutational status in addition to these factors. Ultimately, molecular marker assessment will, hopefully, improve the accuracy of tumor diagnosis and enhance the effectiveness of treatment to achieve improved patient outcomes.

Key Points

  • Isocitrate dehydrogenase (IDH) mutations seem to occur earlier than tumor protein p53 (TP53) mutations or deletions of chromosomes 1p and/or 19q among a subset of diffuse astrocytomas and oligodendroglial tumors

  • Tumors with 1p and/or 19q chromosomal deletions usually also have IDH mutations

  • 1p19q codeletion and IDH mutation each have favorable prognostic value, with IDH-mutated, 1p19q-intact tumors having an outcome intermediate between 1p19q-codeleted tumors and tumors that lack either of these molecular markers

  • The independent prognostic importance of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation remains to be determined

  • No molecular marker has yet been validated as predicting a favorable response to chemotherapy or radiation therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for the development and progression of astrocytic and oligodendroglial tumors.

Similar content being viewed by others

References

  1. Porter, K. R., McCarthy, B. J., Freels, S., Kim, Y. & Davis, F. G. Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology. Neuro. Oncol. 12, 520–527 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Louis, D. N. et al. (eds) WHO Classification of Tumours of the Central Nervous System (International Agency for Research on Cancer, Lyon, 2007).

    Google Scholar 

  3. Wittwer, C. T. & Kusukawa, N. in Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (eds Burtis, C. A. et al.) 1407–1449 (Saunders, St Louis, 2006).

    Google Scholar 

  4. Bruns, D. E., Ashwood, E. R. & Burtis, C. A. (eds) Fundamentals of Molecular Diagnostics (Saunders, St Louis, 2007).

    Google Scholar 

  5. Farkas, D. H. & Holland, C. A. in Cell and Tissue Based Molecular Pathology (eds Tubbs, R. R. & Stoler, M. H.) 19–32 (Churchill Livingstone, Philadelphia, 2009).

    Google Scholar 

  6. Okamoto, Y. et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol. 108, 49–56 (2004).

    PubMed  Google Scholar 

  7. Nakamura, M. et al. p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 11, 159–168 (2001).

    CAS  PubMed  Google Scholar 

  8. Watanabe, T. et al. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J. Neuropathol. Exp. Neurol. 60, 1181–1189 (2001).

    CAS  PubMed  Google Scholar 

  9. Watanabe, T. et al. Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression. Brain Pathol. 17, 5–10 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischer, U. et al. A different view on DNA amplifications indicates frequent, highly complex, and stable amplicons on 12q13–21 in glioma. Mol. Cancer Res. 6, 576–584 (2008).

    CAS  PubMed  Google Scholar 

  11. Dimitriadi, M. et al. p53-independent mechanisms regulate the P2-MDM2 promoter in adult astrocytic tumours. Br. J. Cancer 99, 1144–1152 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Burger, P. C. What is an oligodendroglioma? Brain Pathol. 12, 257–259 (2002).

    PubMed  Google Scholar 

  13. Smith, J. S. et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J. Clin. Oncol. 18, 636–645 (2000).

    CAS  PubMed  Google Scholar 

  14. Mueller, W. et al. Genetic signature of oligoastrocytomas correlates with tumor location and denotes distinct molecular subsets. Am. J. Pathol. 161, 313–319 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Barbashina, V., Salazar, P., Holland, E. C., Rosenblum, M. K. & Ladanyi, M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin. Cancer Res. 11, 1119–1128 (2005).

    CAS  PubMed  Google Scholar 

  16. Thon, N. et al. Novel molecular stereotactic biopsy procedures reveal intratumoral homogeneity of loss of heterozygosity of 1p/19q and TP53 mutations in World Health Organization grade II gliomas. J. Neuropathol. Exp. Neurol. 68, 1219–1228 (2009).

    PubMed  Google Scholar 

  17. Jenkins, R. B. et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 66, 9852–9861 (2006).

    CAS  PubMed  Google Scholar 

  18. Griffin, C. A. et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J. Neuropathol. Exp. Neurol. 65, 988–994 (2006).

    PubMed  Google Scholar 

  19. Fuller, C. E. & Perry, A. Fluorescence in situ hybridization (FISH) in diagnostic and investigative neuropathology. Brain Pathol. 12, 67–86 (2002).

    CAS  PubMed  Google Scholar 

  20. Snuderl, M. et al. Polysomy for chromosomes 1 and 19 predicts earlier recurrence in anaplastic oligodendrogliomas with concurrent 1p/19q loss. Clin. Cancer Res. 15, 6430–6437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ichimura, K. et al. 1p36 is a preferential target of chromosome 1 deletions in astrocytic tumours and homozygously deleted in a subset of glioblastomas. Oncogene 27, 2097–2108 (2008).

    CAS  PubMed  Google Scholar 

  22. Jeuken, J., Cornelissen, S., Boots-Sprenger, S., Gijsen, S. & Wesseling, P. Multiplex ligation-dependent probe amplification: a diagnostic tool for simultaneous identification of different genetic markers in glial tumors. J. Mol. Diagn. 8, 433–443 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mineura, K., Izumi, I., Watanabe, K. & Kowada, M. Influence of O6-methylguanine-DNA methyltransferase activity on chloroethylnitrosourea chemotherapy in brain tumors. Int. J. Cancer 55, 76–81 (1993).

    CAS  PubMed  Google Scholar 

  24. Preusser, M. et al. Anti-O6-methylguanine-methyltransferase (MGMT) immunohistochemistry in glioblastoma multiforme: observer variability and lack of association with patient survival impede its use as clinical biomarker. Brain Pathol. 18, 520–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    CAS  PubMed  Google Scholar 

  26. Citron, M. et al. O6-methylguanine-DNA methyltransferase in human brain tumors detected by activity assay and monoclonal antibodies. Oncol. Res. 7, 49–55 (1995).

    CAS  PubMed  Google Scholar 

  27. Nakasu, S., Fukami, T., Jito, J. & Matsuda, M. Prognostic significance of loss of O6-methylguanine-DNA methyltransferase expression in supratentorial diffuse low-grade astrocytoma. Surg. Neurol. 68, 603–608 (2007).

    PubMed  Google Scholar 

  28. Everhard, S. et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann. Neurol. 60, 740–743 (2006).

    CAS  PubMed  Google Scholar 

  29. Juillerat-Jeanneret, L. et al. Heterogeneity of human glioblastoma: glutathione-S-transferase and methylguanine-methyltransferase. Cancer Invest. 26, 597–609 (2008).

    CAS  PubMed  Google Scholar 

  30. Lavon, I. et al. Longitudinal assessment of genetic and epigenetic markers in oligodendrogliomas. Clin. Cancer Res. 13, 1429–1437 (2007).

    CAS  PubMed  Google Scholar 

  31. Knobbe, C. B., Merlo, A. & Reifenberger, G. PTEN signaling in gliomas. Neuro. Oncol. 4, 196–211 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fults, D. & Pedone, C. Immunocytochemical mapping of the phosphatase and tensin homolog (PTEN/MMAC1) tumor suppressor protein in human gliomas. Neuro. Oncol. 2, 71–79 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ermoian, R. P. et al. Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin. Cancer Res. 8, 1100–1106 (2002).

    CAS  PubMed  Google Scholar 

  34. Zhou, X. P. et al. Mutational analysis of the PTEN gene in gliomas: molecular and pathological correlations. Int. J. Cancer 84, 150–154 (1999).

    CAS  PubMed  Google Scholar 

  35. Rasheed, A. et al. Molecular markers of prognosis in astrocytic tumors. Cancer 94, 2688–2697 (2002).

    CAS  PubMed  Google Scholar 

  36. Walker, C. et al. Characterisation of molecular alterations in microdissected archival gliomas. Acta Neuropathol. 101, 321–333 (2001).

    CAS  PubMed  Google Scholar 

  37. Broniscer, A. et al. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J. Clin. Oncol. 25, 682–689 (2007).

    CAS  PubMed  Google Scholar 

  38. Wiencke, J. K. et al. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro. Oncol. 9, 271–279 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Alvarez-Nunez, F. et al. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid 16, 17–23 (2006).

    CAS  PubMed  Google Scholar 

  40. Goel, A. et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 64, 3014–3021 (2004).

    CAS  PubMed  Google Scholar 

  41. Marsit, C. J. et al. PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum. Pathol. 36, 768–776 (2005).

    CAS  PubMed  Google Scholar 

  42. Cecener, G. et al. Investigation of MMAC/PTEN gene mutations and protein expression in low grade gliomas. Cell. Mol. Neurobiol. 29, 733–738 (2009).

    CAS  PubMed  Google Scholar 

  43. Dhomen, N. & Marais, R. New insight into BRAF mutations in cancer. Curr. Opin. Genet. Dev. 17, 31–39 (2007).

    CAS  PubMed  Google Scholar 

  44. Bar, E. E., Lin, A., Tihan, T., Burger, P. C. & Eberhart, C. G. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J. Neuropathol. Exp. Neurol. 67, 878–887 (2008).

    CAS  PubMed  Google Scholar 

  45. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest. 118, 1739–1749 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones, D. T. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Korshunov, A. et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 118, 401–405 (2009).

    CAS  PubMed  Google Scholar 

  48. Jones, D. T. et al. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28, 2119–2123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, X. et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J. Biol. Chem. 279, 33946–33957 (2004).

    CAS  PubMed  Google Scholar 

  50. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324, 261–265 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Aghili, M., Zahedi, F. & Rafiee, E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J. Neurooncol. 91, 233–236 (2009).

    PubMed  Google Scholar 

  54. Hartmann, C. et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 118, 469–474 (2009).

    PubMed  Google Scholar 

  55. Balss, J. et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 116, 597–602 (2008).

    CAS  PubMed  Google Scholar 

  56. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Watanabe, T., Nobusawa, S., Kleihues, P. & Ohgaki, H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J. Pathol. 174, 1149–1153 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ichimura, K. et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro. Oncol. 11, 341–347 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanson, M. et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J. Clin. Oncol. 27, 4150–4154 (2009).

    CAS  PubMed  Google Scholar 

  60. Bleeker, F. E. et al. IDH1 mutations at residue p.R132 (IDH1R132) occur frequently in high-grade gliomas but not in other solid tumors. Hum. Mutat. 30, 7–11 (2009).

    CAS  PubMed  Google Scholar 

  61. Kang, M. R. et al. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int. J. Cancer 125, 353–355 (2009).

    CAS  PubMed  Google Scholar 

  62. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gross, S. et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med. 207, 339–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Paschka, P. et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 28, 3636–3643 (2010).

    CAS  PubMed  Google Scholar 

  65. Watanabe, T., Vital, A., Nobusawa, S., Kleihues, P. & Ohgaki, H. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome. Acta Neuropathol. 117, 653–656 (2009).

    CAS  PubMed  Google Scholar 

  66. Horbinski, C., Kofler, J., Kelly, L. M., Murdoch, G. H. & Nikiforova, M. N. Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J. Neuropathol. Exp. Neurol. 68, 1319–1325 (2009).

    CAS  PubMed  Google Scholar 

  67. Capper, D., Zentgraf, H., Balss, J., Hartmann, C. & von Deimling, A. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol. 118, 599–601 (2009).

    CAS  PubMed  Google Scholar 

  68. Camelo-Piragua, S. et al. Mutant IDH1-specific immunohistochemistry distinguishes diffuse astrocytoma from astrocytosis. Acta Neuropathol. 119, 509–511 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Pouratian, N., Asthagiri, A., Jagannathan, J., Shaffrey, M. E. & Schiff, D. Surgery Insight: the role of surgery in the management of low-grade gliomas. Nat. Clin. Pract. Neurol. 3, 628–639 (2007).

    PubMed  Google Scholar 

  70. Smith, J. S. et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J. Clin. Oncol. 26, 1338–1345 (2008).

    PubMed  Google Scholar 

  71. van den Bent, M. J. et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366, 985–990 (2005).

    CAS  PubMed  Google Scholar 

  72. Douw, L. et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol. 8, 810–818 (2009).

    PubMed  Google Scholar 

  73. Shaw, E. G. et al. Final report of Radiation Therapy Oncology Group (RTOG) protocol 9802: Radiation therapy (RT) versus RT + procarbazine, CCNU, and vincristine (PCV) chemotherapy for adult low-grade glioma (LGG) [abstract]. J. Clin. Oncol. 26, 2006 (2008).

    Google Scholar 

  74. Hashimoto, N. et al. Correlation between genetic alteration and long-term clinical outcome of patients with oligodendroglial tumors, with identification of a consistent region of deletion on chromosome arm 1p. Cancer 97, 2254–2261 (2003).

    CAS  PubMed  Google Scholar 

  75. Fallon, K. B. et al. Prognostic value of 1p, 19q, 9p, 10q, and EGFR-FISH analyses in recurrent oligodendrogliomas. J. Neuropathol. Exp. Neurol. 63, 314–322 (2004).

    CAS  PubMed  Google Scholar 

  76. McLendon, R. E. et al. Survival analysis of presumptive prognostic markers among oligodendrogliomas. Cancer 104, 1693–1699 (2005).

    CAS  PubMed  Google Scholar 

  77. Kanner, A. A. et al. The impact of genotype on outcome in oligodendroglioma: validation of the loss of chromosome arm 1p as an important factor in clinical decision making. J. Neurosurg. 104, 542–550 (2006).

    PubMed  Google Scholar 

  78. Walker, C. et al. Molecular pathology and clinical characteristics of oligodendroglial neoplasms. Ann. Neurol. 57, 855–865 (2005).

    CAS  PubMed  Google Scholar 

  79. Eoli, M. et al. Reclassification of oligoastrocytomas by loss of heterozygosity studies. Int. J. Cancer 119, 84–90 (2006).

    CAS  PubMed  Google Scholar 

  80. Tosoni, A. et al. Temozolomide three weeks on and one week off as first line therapy for patients with recurrent or progressive low grade gliomas. J. Neurooncol. 89, 179–185 (2008).

    CAS  PubMed  Google Scholar 

  81. Kesari, S. et al. Phase II study of protracted daily temozolomide for low-grade gliomas in adults. Clin. Cancer Res. 15, 330–337 (2009).

    CAS  PubMed  Google Scholar 

  82. Jeon, Y. K. et al. Chromosome 1p and 19q status and p53 and p16 expression patterns as prognostic indicators of oligodendroglial tumors: a clinicopathological study using fluorescence in situ hybridization. Neuropathology 27, 10–20 (2007).

    PubMed  Google Scholar 

  83. Weller, M. et al. Combined 1p/19q loss in oligodendroglial tumors: predictive or prognostic biomarker? Clin. Cancer Res. 13, 6933–6937 (2007).

    CAS  PubMed  Google Scholar 

  84. Kuo, L. T. et al. Correlation among pathology, genetic and epigenetic profiles, and clinical outcome in oligodendroglial tumors. Int. J. Cancer 124, 2872–2879 (2009).

    CAS  PubMed  Google Scholar 

  85. Capelle, L. et al. Retrospective review of prognostic factors, including 1p19q deletion, in low-grade oligodendrogliomas and a review of recent published works. J. Med. Imaging Radiat. Oncol. 53, 305–309 (2009).

    CAS  PubMed  Google Scholar 

  86. Bauman, G. S. et al. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int. J. Radiat. Oncol. Biol. Phys. 48, 825–830 (2000).

    CAS  PubMed  Google Scholar 

  87. Hoang-Xuan, K. et al. Temozolomide as initial treatment for adults with low-grade oligodendrogliomas or oligoastrocytomas and correlation with chromosome 1p deletions. J. Clin. Oncol. 22, 3133–3138 (2004).

    CAS  PubMed  Google Scholar 

  88. Levin, N. et al. Progressive low-grade oligodendrogliomas: response to temozolomide and correlation between genetic profile and O6-methylguanine DNA methyltransferase protein expression. Cancer 106, 1759–1765 (2006).

    CAS  PubMed  Google Scholar 

  89. Buckner, J. C. et al. Phase II trial of procarbazine, lomustine, and vincristine as initial therapy for patients with low-grade oligodendroglioma or oligoastrocytoma: efficacy and associations with chromosomal abnormalities. J. Clin. Oncol. 21, 251–255 (2003).

    CAS  PubMed  Google Scholar 

  90. Stege, E. M. et al. Successful treatment of low-grade oligodendroglial tumors with a chemotherapy regimen of procarbazine, lomustine, and vincristine. Cancer 103, 802–809 (2005).

    PubMed  Google Scholar 

  91. Pouratian, N. et al. Low-grade gliomas in older patients: a retrospective analysis of prognostic factors. J. Neurooncol. 90, 341–350 (2008).

    PubMed  Google Scholar 

  92. Komine, C. et al. Promoter hypermethylation of the DNA repair gene O6-methylguanine-DNA methyltransferase is an independent predictor of shortened progression free survival in patients with low-grade diffuse astrocytomas. Brain Pathol. 13, 176–184 (2003).

    CAS  PubMed  Google Scholar 

  93. van den Bent, M. J. et al. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin. Cancer Res. 16, 1597–1604 (2010).

    CAS  PubMed  Google Scholar 

  94. Labussiere, M. et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 74, 1886–1890 (2010).

    CAS  PubMed  Google Scholar 

  95. Dubbink, H. J. et al. IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology 73, 1792–1795 (2009).

    CAS  PubMed  Google Scholar 

  96. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T. D. Bourne and D. Schiff both contributed equally to this work in terms of research, writing, editing and reviewing.

Corresponding author

Correspondence to David Schiff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourne, T., Schiff, D. Update on molecular findings, management and outcome in low-grade gliomas. Nat Rev Neurol 6, 695–701 (2010). https://doi.org/10.1038/nrneurol.2010.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.159

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer