Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Childhood brain tumors: epidemiology, current management and future directions

Abstract

Brain tumors are the most common solid tumors in children. With the increasingly widespread availability of MRI, the incidence of childhood brain tumors seemed to rise in the 1980s, but has subsequently remained relatively stable. However, management of brain tumors in children has evolved substantially during this time, reflecting refinements in classification of tumors, delineation of risk groups within histological subsets of tumors, and incorporation of molecular techniques to further define tumor subgroups. Although considerable progress has been made in the outcomes of certain tumors, prognosis in other childhood brain tumor types is poor. Among the tumor groups with more-favorable outcomes, attention has been focused on reducing long-term morbidity without sacrificing survival rates. Studies for high-risk groups have examined the use of intensive therapy or novel, molecularly targeted approaches to improve disease control rates. In addition to reviewing the literature and providing an overview of the complexities in diagnosing childhood brain tumors, we will discuss advances in the treatment and categorization of several tumor types in which progress has been most apparent, as well as those in which improvements have been lacking. The latest insights from molecular correlative studies that hold potential for future refinements in therapy will also be discussed.

Key Points

  • The mode of clinical presentation for childhood brain tumors is influenced by patient age, tumor location, and tumor histology

  • Advances in imaging techniques have led to improved detection of, and treatment planning for, childhood brain tumors

  • Extent of surgical resection affects prognosis for most childhood brain tumors, including glioma, medulloblastoma and ependymoma

  • For certain high-risk tumors, such as metastatic medulloblastomas, the addition of chemotherapy to surgery and irradiation has led to improvements in survival rates

  • For other tumor types, administration of chemotherapy has allowed delay in radiation administration or reduction or refinement of radiation delivery to minimize late sequelae of treatment

  • Insights regarding genomic alterations are refining the classification of several childhood brain tumor types (including medulloblastoma) and identifing novel molecularly based therapeutic targets

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical appearance and characteristics of a diffuse intrinsic pontine glioma.
Figure 2: Appearance of several types of low-grade gliomas on MRI.
Figure 3: Typical appearance of a medulloblastoma.
Figure 4: MRI appearance of a high-glade glioma.

Similar content being viewed by others

References

  1. Pollack, I. F. Brain tumors in children. N. Engl. J. Med. 331, 1500–1507 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Howlader, N. et al. SEER cancer statistics review, 1975–2008. National Cancer Institute [online], (2011).

    Google Scholar 

  3. Packer, R. J. et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 24, 4202–4208 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wisoff, J. H. et al. Primary neurosurgery for pediatric low-grade astrocytomas: a prospective multi-institutional study from the Children's Oncology Group. Neurosurgery 68, 1548–1555 (2011).

    Article  PubMed  Google Scholar 

  5. Jennings, M. T. et al. Preradiation chemotherapy in primary high-risk brainstem tumors: phase II study CCG-9941 of the Children's Cancer Group. J. Clin. Oncol. 20, 3431–3437 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Cohen, K. J. et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children's Oncology Group. Neuro Oncol. 13, 410–416 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cohen, K. J. et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group. Neuro Oncol. 13, 317–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hjalmars, U., Kulldorff, M., Wahlqvist, Y. & Lannering, B. Increased incidence rates but no space-time clustering of childhood astrocytoma in Sweden, 1973–1992: a population-based study of pediatric brain tumors. Cancer 85, 2077–2090 (1999).

    CAS  PubMed  Google Scholar 

  9. Makino, K., Nakamura, H., Yano, S. & Kuratsu, J. Population-based epidemiological study of primary intracranial tumors in childhood. Childs Nerv. Syst. 26, 1029–1034 (2010).

    Article  PubMed  Google Scholar 

  10. Feltbower, R. G. et al. Epidemiology of central nervous system tumors in children and young adults (0–29 years), Yorkshire, United Kingdom. Pediatr. Hematol. Oncol. 21, 647–660 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Peris-Bonet, R. et al. Childhood central nervous system tumours—incidence and survival in Europe (1978–1997): report from Automated Childhood Cancer Information System project. Eur. J. Cancer 42, 2064–2080 (2006).

    Article  PubMed  Google Scholar 

  12. CBTRUS. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2006. Central Brain Tumor Registry of the United States [online], (2010).

  13. Suh, Y. L. et al. Tumors of the central nervous system in Korea: a multicenter study of 3221 cases. J. Neurooncol. 56, 251–259 (2002).

    Article  PubMed  Google Scholar 

  14. Linet, M. S., Ries, L. A., Smith, M. A., Tarone, R. E. & Devesa, S. S. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J. Natl Cancer Inst. 91, 1051–1058 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Smith, M. A., Freidlin, B., Ries, L. A. & Simon, R. Increased incidence rates but no space–time clustering of childhood astrocytoma in Sweden, 1973–1992: a population-based study of pediatric brain tumors. Cancer 85, 1492–1493 (1999).

    Google Scholar 

  16. Smith, M. A., Freidlin, B., Ries, L. A. & Simon, R. Trends in reported incidence of primary malignant brain tumors in children in the United States. J. Natl Cancer Inst. 90, 1269–1277 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Kuratsu, J. & Ushio, Y. Epidemiological study of primary intracranial tumors in childhood. A population-based survey in Kumamoto Prefecture, Japan. Pediatr. Neurosurg. 25, 240–246 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Linabery, A. M. & Ross, J. A. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 112, 416–432 (2008).

    Article  PubMed  Google Scholar 

  19. Cohen, K. & Pollack, I. F. in Rudolph's Pediatrics (eds Rudolph, C. D. et al.) 1656–1660 (McGraw–Hill, New York, 2011).

    Google Scholar 

  20. Vinchon, M. et al. Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv. Syst. 27, 445–453 (2011).

    Article  PubMed  Google Scholar 

  21. Baldwin, R. T. & Preston-Martin, S. Epidemiology of brain tumors in childhood-—a review. Toxicol. Appl. Pharmacol. 199, 118–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ron, E. et al. Tumors of the brain and nervous system after radiotherapy in childhood. N. Engl. J. Med. 319, 1033–1039 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Neglia, J. P. et al. Second neoplasms after acute lymphoblastic leukemia in childhood. N. Engl. J. Med. 325, 1330–1336 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Kheifets, L. et al. A pooled analysis of extremely low-frequency magnetic fields and childhood brain tumors. Am. J. Epidemiol. 172, 752–761 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bunin, G. R., Robison, L. L., Biegel, J. A., Pollack, I. F. & Rorke-Adams, L. B. Parental heat exposure and risk of childhood brain tumor: a Children's Oncology Group study. Am. J. Epidemiol. 164, 222–231 (2006).

    Article  PubMed  Google Scholar 

  26. Haimi, M., Peretz Nahum, M. & Ben Arush, M. W. Delay in diagnosis of children with cancer: a retrospective study of 315 children. Pediatr. Hematol. Oncol. 21, 37–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Panigrahy, A., Nelson, M. D. Jr & Bluml, S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr. Radiol. 40, 3–30 (2010).

    Article  PubMed  Google Scholar 

  28. Kim, S., Salamon, N., Jackson, H. A., Bluml, S. & Panigrahy, A. PET imaging in pediatric neuroradiology: current and future applications. Pediatr. Radiol. 40, 82–96 (2010).

    Article  PubMed  Google Scholar 

  29. Finlay, J. L. et al. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J. Clin. Oncol. 13, 112–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Zeltzer, P. M. et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children's Cancer Group 921 randomized phase III study. J. Clin. Oncol. 17, 832–845 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Moshel, Y., Elliott, R. E., Monoky, D. J. & Wisoff, J. H. Role of diffusion tensor imaging in resection of thalamic juvenile pilocytic astrocytoma. J. Neurosurg. Pediatrics 4, 495–505 (2010).

    Article  Google Scholar 

  32. Merchant, T. E. et al. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 10, 258–266 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Merchant, T. E. et al. Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol. 22, 3156–3162 (2004).

    Article  PubMed  Google Scholar 

  34. Merchant, T. E. et al. Preliminary results from a phase II trail of conformal radiation therapy for pediatric patients with localised low-grade astrocytoma and ependymoma. Int. J. Radiat. Oncol. Biol. Phys. 52, 325–332 (2002).

    Article  PubMed  Google Scholar 

  35. Radcliffe, J. et al. Three- and four-year cognitive outcome in children with noncortical brain tumors treated with whole-brain radiotherapy. Ann. Neurol. 32, 551–554 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Ellenberg, L., McComb, J. G., Siegel, S. E. & Stowe, S. Factors affecting intellectual outcome in pediatric brain tumor patients. Neurosurgery 21, 638–644 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. MacDonald, S. M. et al. Proton radiotherapy for childhood ependymoma: initial clinical outcomes and dose comparisons. Int. J. Radiat. Oncol. Biol. Phys. 71, 979–986 (2008).

    Article  PubMed  Google Scholar 

  38. Merchant, T. E. et al. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr. Blood Cancer 51, 110–117 (2008).

    Article  PubMed  Google Scholar 

  39. Evans, A. E. et al. The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J. Neurosurg. 72, 572–582 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Sposto, R. et al. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group. J. Neurooncol. 7, 165–177 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Tait, D. M., Thornton-Jones, H., Bloom, H. J., Lemerle, J. & Morris-Jones, P. Adjuvant chemotherapy for medulloblastoma: the first multi-centre control trial of the International Society of Paediatric Oncology (SIOP I). Eur. J. Cancer 26, 464–469 (1990).

    CAS  PubMed  Google Scholar 

  42. Ater, J. L. Results of COG protocol A9952: A randomized phase 3 study of two chemotherapy regimens for incompletely resected low-grade glioma in young children. Neuro Oncol. 10, 451–452 (2008).

    Google Scholar 

  43. Lafay-Cousin, L. et al. Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer 103, 2636–2642 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Packer, R. J. et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J. Neurosurg. 86, 747–754 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Fisher, B. J., Leighton, C. C., Vujovic, O., Macdonald, D. R. & Stitt, L. Results of a policy of surveillance alone after surgical management of pediatric low grade gliomas. Int. J. Radiat. Oncol. Biol. Phys. 51, 704–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Hirsch, J. F., Sainte Rose, C., Pierre-Kahn, A., Pfister, A. & Hoppe-Hirsch, E. Benign astrocytic and oligodendrocytic tumors of the cerebral hemispheres in children. J. Neurosurg. 70, 568–572 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Pollack, I. F., Claassen, D., al-Shboul, Q., Janosky, J. E. & Deutsch, M. Low-grade gliomas of the cerebral hemispheres in children: an analysis of 71 cases. J. Neurosurg. 82, 536–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Kortmann, R. D. et al. Current and future strategies in radiotherapy of childhood low-grade glioma of the brain. Part I: Treatment modalities of radiation therapy. Strahlenther. Onkol. 179, 509–520 (2003).

    Article  PubMed  Google Scholar 

  49. Mishra, K. K. et al. Phase II TPDCV protocol for pediatric low-grade hypothalamic/chiasmatic gliomas: 15-year update. J. Neurooncol. 100, 121–127 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Massimino, M. et al. A lower-dose, lower-toxicity cisplatin-etoposide regimen for childhood progressive low-grade glioma. J. Neurooncol. 100, 65–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Jones, D. T. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest. 118, 1739–1749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raabe, E. H. et al. BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin. Cancer Res. 17, 3590–3599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kolb, E. A. et al. Initial testing (stage 1) of AZD6244 (ARRY-142886) by the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer 55, 668–677 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gururangan, S. et al. Efficacy of bevacizumab + CPT-11 in children with recurrent low-grade glioma (LGG)—a Pediatric Brain Tumor Consortium study. Neuro Oncol. (in press).

  56. Warren, K. E. et al. Phase I trial of lenalidomide in pediatric patients with recurrent, refractory, or progressive primary CNS tumors: Pediatric Brain Tumor Consortium study PBTC-018. J. Clin. Oncol. 29, 324–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Lam, C. et al. Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr. Blood Cancer 54, 476–479 (2010).

    Article  PubMed  Google Scholar 

  58. Krueger, D. A. et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med. 363, 1801–1811 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Li, M. et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16, 533–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3, e3088 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    Article  PubMed  Google Scholar 

  64. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Louis, D. N. et al. The WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pizer, B. L. et al. Analysis of patients with supratentorial primitive neuro-ectodermal tumours entered into the SIOP/UKCCSG PNET 3 study. Eur. J. Cancer 42, 1120–1128 (2006).

    Article  PubMed  Google Scholar 

  68. Taylor, R. E. et al. Outcome for patients with metastatic (M2–3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur. J. Cancer 41, 727–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Thomas, P. R. et al. Low-stage medulloblastoma: final analysis of trial comparing standard-dose with reduced-dose neuraxis irradiation. J. Clin. Oncol. 18, 3004–3011 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Packer, R. J. et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children's Cancer Group Study. J. Clin. Oncol. 17, 2127–2136 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. US National Library of Medicine. Comparison of radiation therapy regimens in combination with chemotherapy in treating young patients with newly diagnosed standard-risk medulloblastoma. ClinicalTrials.gov [online], (2011).

  72. Tabori, U. et al. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J. Clin. Oncol. 28, 1345–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Von Hoff, K. et al. Outcome according to Myc status, histopathological, and clinical risk factors. Pediatr. Blood Cancer 54, 369–376 (2009).

    Article  Google Scholar 

  74. Miralbell, R. et al. Radiotherapy in pediatric medulloblastoma: quality assessment of Pediatric Oncology Group Trial 9031. Int. J. Radiat. Oncol. Biol. Phys. 64, 1325–1330 (2006).

    Article  PubMed  Google Scholar 

  75. Gajjar, A. et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St. Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 7, 813–820 (2006).

    Article  PubMed  Google Scholar 

  76. Jakacki, R. et al. Outcome for metastatic (M+) medulloblastoma (MB) treated with carboplatin during craniospinal radiotherapy (CSRT) followed by cyclophosphamide (CPM) and vincristine (VCR). J. Clin. Oncol. 25, 75S (2007).

    Article  Google Scholar 

  77. US National Library of Medicine. Chemotherapy and radiation therapy in treating young patients with newly diagnosed, previously untreated, high-risk medulloblastoma or supratentorial primitive neuroectodermal tumor. ClinicalTrials.gov [online], (2011).

  78. Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842–845 (1997).

    CAS  PubMed  Google Scholar 

  79. Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Romer, J. & Curran, T. Targeting medulloblastoma: small-molecule inhibitors of the Sonic Hedgehog pathway as potential cancer therapeutics. Cancer Res. 65, 4975–4978 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. US National Library of Medicine. GDC-0449 in treating young patients with medulloblastoma that is recurrent or did not respond to previous treatment. ClinicalTrials.gov [online], (2010).

  83. Horn, B. et al. A multi-institutional retrospective study of intracranial ependymoma in children: identification of risk factors. J. Pediatr. Hematol. Oncol. 21, 203–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Robertson, P. L. et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children's Cancer Group. J. Neurosurg. 88, 695–703 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Merchant, T. E. et al. Influence of tumor grade on time to progression after irradiation for localized ependymoma in children. Int. J. Radiat. Oncol. Biol. Phys. 53, 52–57 (2002).

    Article  PubMed  Google Scholar 

  86. Hukin, J., Epstein, F., Lefton, D. & Allen, J. Treatment of intracranial ependymoma by surgery alone. Pediatr. Neurosurg. 29, 40–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Duffner, P. K. et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N. Engl. J. Med. 328, 1725–1731 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Gaynon, P. S. et al. Carboplatin in childhood brain tumors. A Children's Cancer Study group phase II trial. Cancer 66, 2465–2469 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Needle, M. N. et al. Adjuvant chemotherapy for the treatment of intracranial ependymoma of childhood. Cancer 80, 341–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Ridley, L. et al. Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma. Neuro Oncol. 10, 675–689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tabori, U. et al. Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J. Clin. Oncol. 24, 1522–1528 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Johnson, R. A. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466, 632–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. MacDonald, T. J. et al. Phase II study of high-dose chemotherapy before radiation in children with newly diagnosed high-grade astrocytoma: final analysis of Children's Cancer Group Study 9933. Cancer 104, 2862–2871 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Hales, R. K. et al. Prognostic factors in pediatric high-grade astrocytoma: the importance of accurate pathologic diagnosis. J. Neurooncol 99, 65–71 (2010).

    Article  PubMed  Google Scholar 

  96. Pollack, I. F. et al. The influence of central review on outcome associations in childhood malignant gliomas: results from the CCG-945 experience. Neuro Oncol. 5, 197–207 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pollack, I. F. et al. Expression of p53 and prognosis in children with malignant gliomas. N. Engl. J. Med. 346, 420–427 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Pollack, I. F. et al. O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 Cohort. J Clin. Oncol. 24, 3431–3437 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. .J. Med. 352, 997–1003 (1003).

    Article  Google Scholar 

  100. Jakacki, R. I. et al. A phase I trial of temozolomide and lomustine in newly diagnosed high-grade gliomas of childhood. Neuro Oncol. 10, 569–576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jakacki, R. I. et al. A phase II study of concurrent radiation and temozolomide (TMZ) followed by temozolomide and lomustine (CCNU) in the treatment of children with high grade glioma (HGG): results of COG ACNS0423. Neuro Oncol. 12, ii12 (2010).

    Google Scholar 

  102. Pollack, I. et al. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children's Cancer Group 945 cohort. J. Neurosurg. 105 (Suppl. 5), 418–424 (2006).

    PubMed  Google Scholar 

  103. Hartmann, C. et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 118, 469–474 (2009).

    Article  PubMed  Google Scholar 

  104. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pollack, I. F. et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children's Oncology Group. Childs Nerv. Syst. 27, 87–94 (2011).

    Article  PubMed  Google Scholar 

  106. Kieran, M. W. et al. Phase I study of SU5416, a small molecule inhibitor of the vascular endothelial growth factor receptor (VEGFR) in refractory pediatric central nervous system tumors. Pediatr. Blood Cancer 52, 169–176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Paugh, B. S. et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. 28, 3061–3068 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Okada, H. et al. Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J. Neurooncol. 88, 245–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Van Gool, S. et al. Dendritic cell therapy of high-grade gliomas. Brain Pathol. 19, 694–712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Albright, A. L. et al. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children's Cancer Group. Neurosurgery 33, 1026–1029 (1993).

    CAS  PubMed  Google Scholar 

  112. Epstein, F. & McCleary, E. L. Intrinsic brain-stem tumors of childhood: surgical indications. J. Neurosurg. 64, 11–15 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. Pollack, I. F., Hoffman, H. J., Humphreys, R. P. & Becker, L. The long-term outcome after surgical treatment of dorsally exophytic brain-stem gliomas. J. Neurosurg. 78, 859–863 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Freeman, C. R. et al. Final results of a study of escalating doses of hyperfractionated radiotherapy in brain stem tumors in children: a Pediatric Oncology Group study. Int. J. Radiat. Oncol. Biol. Phys. 27, 197–206 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Packer, R. J. et al. Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy. A Childrens Cancer Group Phase I/II Trial. Cancer 74, 1827–1834 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Dunkel, I. J. et al. High dose chemotherapy with autologous bone marrow rescue for children with diffuse pontine brain stem tumors. Children's Cancer Group. J. Neurooncol. 37, 67–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Jenkin, R. D. et al. Brain-stem tumors in childhood: a prospective randomized trial of irradiation with and without adjuvant CCNU, VCR, and prednisone. A report of the Childrens Cancer Study Group. J. Neurosurg. 66, 227–233 (1987).

    Article  CAS  PubMed  Google Scholar 

  118. Kretschmar, C. S. et al. Pre-irradiation chemotherapy and hyperfractionated radiation therapy 66 Gy for children with brain stem tumors. A phase II study of the Pediatric Oncology Group, Protocol 8833. Cancer 72, 1404–1413 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Bernier-Chastagner, V. et al. Topotecan as a radiosensitizer in the treatment of children with malignant diffuse brainstem gliomas: results of a French Society of Paediatric Oncology Phase II Study. Cancer 104, 2792–2797 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Bradley, K. A. Motexafin gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a Children's Oncology Group phase 1 study. Neuro Oncol. 10, 752–758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Haas-Kogan, D. A. et al. Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. Neuro Oncol. 13, 298–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pollack, I. F. et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol. 9, 145–160 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pollack, I. F. et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol. 13, 290–297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zarghooni, M. et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J. Clin. Oncol. 28, 1337–1344 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Pirotte, B. J. et al. Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J. Neurosurg. 107, 392–399 (2007).

    Article  PubMed  CAS  Google Scholar 

  126. Roujeau, T. et al. Stereotactic biopsy of diffuse pontine lesions in children. J. Neurosurg. 107, 1–4 (2007).

    Article  PubMed  Google Scholar 

  127. Lonser, R. R. et al. Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J. Neurosurg. 107, 190–197 (2007).

    Article  PubMed  Google Scholar 

  128. Geyer, J. R. et al. Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children's Cancer Group. J. Clin. Oncol. 23, 7621–7631 (2005).

    Article  PubMed  Google Scholar 

  129. Dhall, G. et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr. Blood Cancer 50, 1169–1175 (2008).

    Article  PubMed  Google Scholar 

  130. Grill, J. et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol. 6, 573–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Ashley, D. M. Systemic chemotherapy, second look surgery and conformal radiation therapy limited to the posterior fossa and primary site for children >8 months and <3 years with nonmetastatic medulloblastoma: a Children's Oncology Group phase III study, follow up report. Neuro Oncol. 12, ii6 (2010).

    Google Scholar 

  132. Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352, 978–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).

    CAS  PubMed  Google Scholar 

  134. Eaton, K., Tooke, L. S., Wainwright, L. M., Judkins, A. R., Biegel, J. A. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr. Blood Cancer 56, 7–15 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Judkins, A. R. et al. INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J. Neuropathol. Exp. Neurol. 64, 391–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Chi, S. N. et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J. Clin. Oncol. 27, 385–389 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Finkelstein-Shechter, T. et al. Atypical teratoid or rhabdoid tumors: improved outcome with high-dose chemotherapy. J. Pediatr. Hematol. Oncol. 23, e182–e186 (2010).

    Article  Google Scholar 

  138. Tekautz, T. M. et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J. Clin. Oncol. 23, 1491–1499 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Garre, M. L. et al. Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome—a new clinical perspective. Clin. Cancer Res. 15, 2463–2471 (2009).

    Article  PubMed  Google Scholar 

  140. Pollack, I. F. Posterior fossa syndrome. Int. Rev. Neurobiol. 41, 411–432 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Ullrich, N. J. Neurologic sequelae of brain tumors in children. J. Child Neurol. 24, 1446–1454 (2009).

    Article  PubMed  Google Scholar 

  142. Wells, E. M. et al. Postoperative cerebellar mutism syndrome following treatment of medulloblastoma: neuroradiographic features and origin. J. Neurosurg. Pediatr. 5, 329–334 (2010).

    Article  PubMed  Google Scholar 

  143. Palmer, S. L. et al. Neurocognitive outcome 12 months following cerebellar mutism syndrome in pediatric patients with medulloblastoma. Neuro Oncol. 12, 1311–1317 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants P01NS40923 and R01NS37704 to I. F. Pollack. The authors appreciate the assistance of Dr A. Panigrahy, Children's Hospital of Pittsburgh, PA, USA, and Dr S. Bluml, Childrens Hospital Los Angeles, CA, USA, who provided the magnetic resonance spectroscopy images depicted in Figure 1c.

Author information

Authors and Affiliations

Authors

Contributions

I. F. Pollack researched data for the article. I. F. Pollack and R. I. Jakacki made equal contributions to discussions of the content. Both authors contributed to the writing, reviewing and editing of the manuscript, with I. F. Pollack doing the majority of the writing and editing and R. I. Jakacki doing the majority of the reviewing.

Corresponding author

Correspondence to Ian F. Pollack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollack, I., Jakacki, R. Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol 7, 495–506 (2011). https://doi.org/10.1038/nrneurol.2011.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.110

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer