Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis

Abstract

The different autoimmune myopathies—for example, dermatomyositis, polymyositis, and immune-mediated necrotizing myopathies (IMNM)—have unique muscle biopsy findings, but they also share specific clinical features, such as proximal muscle weakness and elevated serum levels of muscle enzymes. Furthermore, around 60% of patients with autoimmune myopathy have been shown to have a myositis-specific autoantibody, each of which is associated with a distinct clinical phenotype. The typical clinical presentations of the autoimmune myopathies are reviewed here, and the different myositis-specific autoantibodies, including the anti-synthetase antibodies, dermatomyositis-associated antibodies, and IMNM-associated antibodies, are discussed in detail. This Review also focuses on a newly recognized form of IMNM that is associated with statin use and the production of autoantibodies that recognize 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the pharmacological target of statins. The contribution of interferon signaling to the development of dermatomyositis and the potential link between malignancies and the initiation of autoimmune myopathies are also assessed.

Key Points

  • The autoimmune myopathies include dermatomyositis, polymyositis, and immune-mediated necrotizing myopathies

  • Autoimmune muscle disease typically presents with subacute onset of proximal muscle weakness, elevated muscle enzyme levels, an irritable myopathy on electromyography, and inflammation and/or necrosis of myofibers on muscle biopsy

  • The majority of patients with autoimmune myopathy have one of the myositis-specific autoantibodies, each of which is associated with a distinct clinical phenotype

  • Statin-triggered autoimmune myopathy is a newly recognized form of muscle disease that is associated with autoantibodies recognizing 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the pharmacological target of statins

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscle biopsies from patients with polymyositis, dermatomyositis or immune-mediated necrotic myopathy.
Figure 2: Thigh MRI from a patient with dermatomyositis.
Figure 3: Gottron papules.
Figure 4: Hyperkeratotic lesions associated with antisynthetase syndrome.
Figure 5: Initiation and maintenance of autoantibody production.

Similar content being viewed by others

References

  1. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis (second of two parts). N. Engl. J. Med. 292, 403–407 (1975).

    CAS  PubMed  Google Scholar 

  2. Dalakas, M. C. & Hohlfeld, R. Polymyositis and dermatomyositis. Lancet 362, 971–982 (2003).

    CAS  PubMed  Google Scholar 

  3. Mammen, A. L. Dermatomyositis and polymyositis: clinical presentation, autoantibodies, and pathogenesis. Ann. NY Acad. Sci. 1184, 134–153 (2010).

    CAS  PubMed  Google Scholar 

  4. Miller, T., Al-Lozi, M. T., Lopate, G. & Pestronk, A. Myopathy with antibodies to the signal recognition particle: clinical and pathological features. J. Neurol. Neurosurg. Psychiatry 73, 420–428 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Emslie-Smith, A. M. & Engel, A. G. Necrotizing myopathy with pipestem capillaries, microvascular deposition of the complement membrane attack complex (MAC), and minimal cellular infiltration. Neurology 41, 936–939 (1991).

    CAS  PubMed  Google Scholar 

  6. Levin, M. I., Mozaffar, T., Al-Lozi, M. T. & Pestronk, A. Paraneoplastic necrotizing myopathy: clinical and pathological features. Neurology 50, 764–767 (1998).

    CAS  PubMed  Google Scholar 

  7. Vosskamper, M., Korf, B., Franke, F. & Schachenmayr, W. Paraneoplastic necrotizing myopathy: a rare disorder to be differentiated from polymyositis. J. Neurol. 236, 489–490 (1989).

    CAS  PubMed  Google Scholar 

  8. Grable-Esposito, P. et al. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve 41, 185–190 (2010).

    CAS  PubMed  Google Scholar 

  9. Christopher-Stine, L. et al. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 62, 2757–2766 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoogendijk, J. E. et al. 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 1–12 October 2003, Naarden, The Netherlands. Neuromuscul. Disord. 14, 337–345 (2004).

    PubMed  Google Scholar 

  11. Dalakas, M. C. Sporadic inclusion body myositis—diagnosis, pathogenesis and therapeutic strategies. Nat. Clin. Pract. Neurol. 2, 437–447 (2006).

    CAS  PubMed  Google Scholar 

  12. Weihl, C. C. & Pestronk, A. Sporadic inclusion body myositis: possible pathogenesis inferred from biomarkers. Curr. Opin. Neurol. 23, 482–488 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Salajegheh, M. et al. Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve 40, 19–31 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Karpati, G. & O'Ferrall, E. K. Sporadic inclusion body myositis: pathogenic considerations. Ann. Neurol. 65, 7–11 (2009).

    PubMed  Google Scholar 

  15. Greenberg, S. A. Theories of the pathogenesis of inclusion body myositis. Curr. Rheumatol. Rep. 12, 221–228 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bohan, A., Peter, J. B., Bowman, R. L. & Pearson, C. M. Computer-assisted analysis of 153 patients with polymyositis and dermatomyositis. Medicine (Baltimore) 56, 255–286 (1977).

    CAS  Google Scholar 

  17. Mielnik, P., Wiesik-Szewczyk, E., Olesinska, M., Chwalinska-Sadowska, H. & Zabek, J. Clinical features and prognosis of patients with idiopathic myopathies and anti-Jo-1 antibodies. Autoimmunity 39, 243–247 (2006).

    CAS  PubMed  Google Scholar 

  18. Streib, E. W., Wilbourn, A. J. & Mitsumoto, H. Spontaneous electrical muscle fiber activity in polymyositis and dermatomyositis. Muscle Nerve 2, 14–18 (1979).

    CAS  PubMed  Google Scholar 

  19. Gallardo, E. et al. Inflammation in dysferlin myopathy: immunohistochemical characterization of 13 patients. Neurology 57, 2136–2138 (2001).

    CAS  PubMed  Google Scholar 

  20. Dalakas, M. C. Muscle biopsy findings in inflammatory myopathies. Rheum. Dis. Clin. North Am. 28, 779–798 (2002).

    PubMed  Google Scholar 

  21. Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies. III: Immunoelectron microscopy aspects of cell-mediated muscle fiber injury. Ann. Neurol. 19, 112–125 (1986).

    CAS  PubMed  Google Scholar 

  22. Dalakas, M. C. Polymyositis, dermatomyositis and inclusion-body myositis. N. Engl. J. Med. 325, 1487–1498 (1991).

    CAS  PubMed  Google Scholar 

  23. Hochberg, M. C., Feldman, D. & Stevens, M. B. Adult onset polymyositis/dermatomyositis: an analysis of clinical and laboratory features and survival in 76 patients with a review of the literature. Semin. Arthritis Rheum. 15, 168–178 (1986).

    CAS  PubMed  Google Scholar 

  24. Carter, J. D., Kanik, K. S., Vasey, F. B. & Valeriano-Marcet, J. Dermatomyositis with normal creatine kinase and elevated aldolase levels. J. Rheumatol. 28, 2366–2367 (2001).

    CAS  PubMed  Google Scholar 

  25. Sato, S. et al. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 52, 1571–1576 (2005).

    CAS  PubMed  Google Scholar 

  26. Nozaki, K. & Pestronk, A. High aldolase with normal creatine kinase in serum predicts a myopathy with perimysial pathology. J. Neurol. Neurosurg. Psychiatry. 80, 904–908 (2009).

    CAS  PubMed  Google Scholar 

  27. Rosales, X. Q. et al. Fidelity of gamma-glutamyl transferase (GGT) in differentiating skeletal muscle from liver damage. J. Child Neurol. 23, 748–751 (2008).

    PubMed  Google Scholar 

  28. Adams, E. M., Chow, C. K., Premkumar, A. & Plotz, P. H. The idiopathic inflammatory myopathies: spectrum of MR imaging findings. Radiographics 15, 563–574 (1995).

    CAS  PubMed  Google Scholar 

  29. Targoff, I. N., Miller, F. W., Medsger, T. A. Jr & Oddis, C. V. Classification criteria for the idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 9, 527–535 (1997).

    CAS  PubMed  Google Scholar 

  30. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis (first of two parts). N. Engl. J. Med. 292, 344–347 (1975).

    CAS  PubMed  Google Scholar 

  31. Schweitzer, M. E. & Fort, J. Cost-effectiveness of MR imaging in evaluating polymyositis. AJR Am. J. Roentgenol. 165, 1469–1471 (1995).

    CAS  PubMed  Google Scholar 

  32. Tomasova Studynkova, J., Charvat, F., Jarosova, K. & Vencovsky, J. The role of MRI in the assessment of polymyositis and dermatomyositis. Rheumatology (Oxford) 46, 1174–1179 (2007).

    CAS  Google Scholar 

  33. Curiel, R. V., Jones, R. & Brindle, K. Magnetic resonance imaging of the idiopathic inflammatory myopathies: structural and clinical aspects. Ann. NY Acad. Sci. 1154, 101–114 (2009).

    CAS  PubMed  Google Scholar 

  34. Callen, J. P. Dermatomyositis. Lancet 355, 53–57 (2000).

    CAS  PubMed  Google Scholar 

  35. Dugan, E. M., Huber, A. M., Miller, F. W., Rider, L. G. & International Myositis Assessment and Clinical Studies Group. Review of the classification and assessment of the cutaneous manifestations of the idiopathic inflammatory myopathies. Dermatol. Online J. 15, 2 (2009).

    PubMed  Google Scholar 

  36. Dugan, E. M., Huber, A. M., Miller, F. W., Rider, L. G. & International Myositis Assessment and Clinical Studies Group. Photoessay of the cutaneous manifestations of the idiopathic inflammatory myopathies. Dermatol. Online J. 15, 1 (2009).

    PubMed  Google Scholar 

  37. Euwer, R. L. & Sontheimer, R. D. Amyopathic dermatomyositis: a review. J. Invest. Dermatol. 100, 124S–127S (1993).

    CAS  PubMed  Google Scholar 

  38. Cheong, W. K., Hughes, G. R., Norris, P. G. & Hawk, J. L. Cutaneous photosensitivity in dermatomyositis. Br. J. Dermatol. 131, 205–208 (1994).

    CAS  PubMed  Google Scholar 

  39. Dourmishev, L., Meffert, H. & Piazena, H. Dermatomyositis: comparative studies of cutaneous photosensitivity in lupus erythematosus and normal subjects. Photodermatol. Photoimmunol. Photomed. 20, 230–234 (2004).

    CAS  PubMed  Google Scholar 

  40. Crowson, A. N., Magro, C. M. & Mihm, M. C. Jr. Interface dermatitis. Arch. Pathol. Lab. Med. 132, 652–666 (2008).

    PubMed  Google Scholar 

  41. Dourmishev, L. A. & Wollina, U. Dermatomyositis: immunopathologic study of skin lesions. Acta Dermatovenerol. Alp. Panonica Adriat. 15, 45–51 (2006).

    Google Scholar 

  42. Cohen, M. G., Nash, P. & Webb, J. Calcification is rare in adult-onset dermatopolymyositis. Clin. Rheumatol. 5, 512–516 (1986).

    CAS  PubMed  Google Scholar 

  43. Amato, A. A. & Barohn, R. J. Idiopathic inflammatory myopathies. Neurol. Clin. 15, 615–648 (1997).

    CAS  PubMed  Google Scholar 

  44. Follansbee, W. P., Zerbe, T. R. & Medsger, T. A. Jr. Cardiac and skeletal muscle disease in systemic sclerosis (scleroderma): a high risk association. Am. Heart J. 125, 194–203 (1993).

    CAS  PubMed  Google Scholar 

  45. Thompson, J. M., Bluestone, R., Bywaters, E. G., Dorling, J. & Johnson, M. Skeletal muscle involvement in systemic sclerosis. Ann. Rheum. Dis. 28, 281–288 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tymms, K. E. & Webb, J. Dermatopolymyositis and other connective tissue diseases: a review of 105 cases. J. Rheumatol. 12, 1140–1148 (1985).

    CAS  PubMed  Google Scholar 

  47. Askari, A. D. Inflammatory disorders of muscle. Cardiac abnormalities. Clin. Rheum. Dis. 10, 131–149 (1984).

    CAS  PubMed  Google Scholar 

  48. Gottdiener, J. S., Sherber, H. S., Hawley, R. J. & Engel, W. K. Cardiac manifestations in polymyositis. Am. J. Cardiol. 41, 1141–1149 (1978).

    CAS  PubMed  Google Scholar 

  49. Haupt, H. M. & Hutchins, G. M. The heart and cardiac conduction system in polymyositis-dermatomyositis: a clinicopathologic study of 16 autopsied patients. Am. J. Cardiol. 50, 998–1006 (1982).

    CAS  PubMed  Google Scholar 

  50. Strongwater, S. L., Annesley, T. & Schnitzer, T. J. Myocardial involvement in polymyositis. J. Rheumatol. 10, 459–463 (1983).

    CAS  PubMed  Google Scholar 

  51. Lundberg, I. E. The heart in dermatomyositis and polymyositis. Rheumatology (Oxford) 45 (Suppl. 4), 18–21 (2006).

    Google Scholar 

  52. Stern, R., Godbold, J. H., Chess, Q. & Kagen, L. J. ECG abnormalities in polymyositis. Arch. Intern. Med. 144, 2185–2189 (1984).

    CAS  PubMed  Google Scholar 

  53. Dickey, B. F. & Myers, A. R. Pulmonary disease in polymyositis/dermatomyositis. Semin. Arthritis Rheum. 14, 60–76 (1984).

    CAS  PubMed  Google Scholar 

  54. Frazier, A. R. & Miller, R. D. Interstitial pneumonitis in association with polymyositis and dermatomyositis. Chest 65, 403–407 (1974).

    CAS  PubMed  Google Scholar 

  55. Park, S. & Nyhan, W. L. Fatal pulmonary involvement in dermatomyositis. Am. J. Dis. Child. 129, 723–726 (1975).

    CAS  PubMed  Google Scholar 

  56. Schwarz, M. I. et al. Interstitial lung disease in polymyositis and dermatomyositis: analysis of six cases and review of the literature. Medicine (Baltimore) 55, 89–104 (1976).

    CAS  Google Scholar 

  57. Benbassat, J. et al. Prognostic factors in polymyositis/dermatomyositis. A computer-assisted analysis of ninety-two cases. Arthritis Rheum. 28, 249–255 (1985).

    CAS  PubMed  Google Scholar 

  58. Tazelaar, H. D., Viggiano, R. W., Pickersgill, J. & Colby, T. V. Interstitial lung disease in polymyositis and dermatomyositis. Clinical features and prognosis as correlated with histologic findings. Am. Rev. Respir. Dis. 141, 727–733 (1990).

    CAS  PubMed  Google Scholar 

  59. Takizawa, H. et al. Interstitial lung disease in dermatomyositis: clinicopathological study. J. Rheumatol. 14, 102–107 (1987).

    CAS  PubMed  Google Scholar 

  60. Fathi, M., Dastmalchi, M., Rasmussen, E., Lundberg, I. E. & Tornling, G. Interstitial lung disease, a common manifestation of newly diagnosed polymyositis and dermatomyositis. Ann. Rheum. Dis. 63, 297–301 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gunawardena, H., Betteridge, Z. E. & McHugh, N. J. Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology (Oxford) 48, 607–612 (2009).

    CAS  Google Scholar 

  62. Tanimoto, K. et al. Classification criteria for polymyositis and dermatomyositis. J. Rheumatol. 22, 668–674 (1995).

    CAS  PubMed  Google Scholar 

  63. Madan, V., Chinoy, H., Griffiths, C. E. & Cooper, R. G. Defining cancer risk in dermatomyositis. Part II. Assessing diagnostic usefulness of myositis serology. Clin. Exp. Dermatol. 34, 561–565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nishikai, M. & Reichlin, M. Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. Arthritis Rheum. 23, 881–888 (1980).

    CAS  PubMed  Google Scholar 

  65. Hirakata, M. Autoantibodies to aminoacyl-tRNA synthetases. Intern. Med. 44, 527–528 (2005).

    PubMed  Google Scholar 

  66. Mathews, M. B., Reichlin, M., Hughes, G. R. & Bernstein, R. M. Anti-threonyl-tRNA synthetase, a second myositis-related autoantibody. J. Exp. Med. 160, 420–434 (1984).

    CAS  PubMed  Google Scholar 

  67. Bunn, C. C., Bernstein, R. M. & Mathews, M. B. Autoantibodies against alanyl-tRNA synthetase and tRNAAla coexist and are associated with myositis. J. Exp. Med. 163, 1281–1291 (1986).

    CAS  PubMed  Google Scholar 

  68. Targoff, I. N. Autoantibodies to aminoacyl-transfer RNA synthetases for isoleucine and glycine. Two additional synthetases are antigenic in myositis. J. Immunol. 144, 1737–1743 (1990).

    CAS  PubMed  Google Scholar 

  69. Hirakata, M. et al. Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J. Immunol. 162, 2315–2320 (1999).

    CAS  PubMed  Google Scholar 

  70. Hashish, L., Trieu, E. P., Sadanandan, P. & Targoff, I. N. Identification of autoantibodies to tyrosyl-tRNA synthetase in dermatomyositis with features consistent with anti-synthetase syndrome (abstract). Arthritis Rheum. 52 (Suppl.), S312 (2005).

    Google Scholar 

  71. Betteridge, Z., Gunawardena, H., North, J., Slinn, J. & McHugh, N. Anti-synthetase syndrome: a new autoantibody to phenylalanyl transfer RNA synthetase (anti-Zo) associated with polymyositis and interstitial pneumonia. Rheumatology (Oxford) 46, 1005–1008 (2007).

    CAS  Google Scholar 

  72. Yoshida, S. et al. The precipitating antibody to an acidic nuclear protein antigen, the Jo-1, in connective tissue diseases. A marker for a subset of polymyositis with interstitial pulmonary fibrosis. Arthritis Rheum. 26, 604–611 (1983).

    CAS  PubMed  Google Scholar 

  73. Marguerie, C. et al. Polymyositis, pulmonary fibrosis and autoantibodies to aminoacyl-tRNA synthetase enzymes. Q. J. Med. 77, 1019–1038 (1990).

    CAS  PubMed  Google Scholar 

  74. Kalluri, M. et al. Clinical profile of anti-PL-12 autoantibody: Cohort study and review of the literature. Chest 135, 1550–1556 (2009).

    CAS  PubMed  Google Scholar 

  75. Reichlin, M. & Mattioli, M. Description of a serological reaction characteristic of polymyositis. Clin. Immunol. Immunopathol. 5, 12–20 (1976).

    CAS  PubMed  Google Scholar 

  76. Seelig, H. P. et al. The major dermatomyositis-specific Mi-2 autoantigen is a presumed helicase involved in transcriptional activation. Arthritis Rheum. 38, 1389–1399 (1995).

    CAS  PubMed  Google Scholar 

  77. Seelig, H. P., Renz, M., Targoff, I. N., Ge, Q. & Frank, M. B. Two forms of the major antigenic protein of the dermatomyositis-specific Mi-2 autoantigen. Arthritis Rheum. 39, 1769–1771 (1996).

    CAS  PubMed  Google Scholar 

  78. Ge, Q., Nilasena, D. S., O'Brien, C. A., Frank, M. B. & Targoff, I. N. Molecular analysis of a major antigenic region of the 240-kD protein of Mi-2 autoantigen. J. Clin. Invest. 96, 1730–1737 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nilasena, D. S., Trieu, E. P. & Targoff, I. N. Analysis of the Mi-2 autoantigen of dermatomyositis. Arthritis Rheum. 38, 123–128 (1995).

    CAS  PubMed  Google Scholar 

  80. Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).

    CAS  PubMed  Google Scholar 

  81. Wang, H. B. & Zhang, Y. Mi2, an auto-antigen for dermatomyositis, is an ATP-dependent nucleosome remodeling factor. Nucleic Acids Res. 29, 2517–2521 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kashiwagi, M., Morgan, B. A. & Georgopoulos, K. The chromatin remodeler Mi-2beta is required for establishment of the basal epidermis and normal differentiation of its progeny. Development 134, 1571–1582 (2007).

    CAS  PubMed  Google Scholar 

  83. Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119, 75–86 (2004).

    CAS  PubMed  Google Scholar 

  84. Williams, C. J. et al. The chromatin remodeler Mi-2β is required for CD4 expression and T cell development. Immunity 20, 719–733 (2004).

    CAS  Google Scholar 

  85. Naito, T., Gomez-Del Arco, P., Williams, C. J. & Georgopoulos, K. Antagonistic interactions between Ikaros and the chromatin remodeler Mi-2β determine silencer activity and Cd4 gene expression. Immunity 27, 723–734 (2007).

    CAS  PubMed  Google Scholar 

  86. Gao, H. et al. Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proc. Natl Acad. Sci. USA 106, 11258–11263 (2009).

    CAS  PubMed  Google Scholar 

  87. Mammen, A. L. et al. Expression of the dermatomyositis autoantigen Mi-2 in regenerating muscle. Arthritis Rheum. 60, 3784–3793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ghirardello, A. et al. Anti-Mi-2 antibodies. Autoimmunity 38, 79–83 (2005).

    CAS  PubMed  Google Scholar 

  89. Targoff, I. N. & Reichlin, M. The association between Mi-2 antibodies and dermatomyositis. Arthritis Rheum. 28, 796–803 (1985).

    CAS  PubMed  Google Scholar 

  90. Targoff, I. N. Myositis specific autoantibodies. Curr. Rheumatol. Rep. 8, 196–203 (2006).

    CAS  PubMed  Google Scholar 

  91. Love, L. A. et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore) 70, 360–374 (1991).

    CAS  Google Scholar 

  92. Arnett, F. C. et al. Interrelationship of major histocompatibility complex class II alleles and autoantibodies in four ethnic groups with various forms of myositis. Arthritis Rheum. 39, 1507–1518 (1996).

    CAS  PubMed  Google Scholar 

  93. Mierau, R. et al. Strong association of dermatomyositis-specific Mi-2 autoantibodies with a tryptophan at position 9 of the HLA-DR beta chain. Arthritis Rheum. 39, 868–876 (1996).

    CAS  PubMed  Google Scholar 

  94. Hausmanowa-Petrusewicz, I. et al. Clinical, serologic, and immunogenetic features in Polish patients with idiopathic inflammatory myopathies. Arthritis Rheum. 40, 1257–1266 (1997).

    CAS  PubMed  Google Scholar 

  95. Targoff, I. N. Laboratory testing in the diagnosis and management of idiopathic inflammatory myopathies. Rheum. Dis. Clin. North Am. 28, 859–890 (2002).

    PubMed  Google Scholar 

  96. Hengstman, G. J. et al. Clinical characteristics of patients with myositis and autoantibodies to different fragments of the Mi-2β antigen. Ann. Rheum. Dis. 65, 242–245 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Roux, S., Seelig, H. P. & Meyer, O. Significance of Mi-2 autoantibodies in polymyositis and dermatomyositis. J. Rheumatol. 25, 395–396 (1998).

    CAS  PubMed  Google Scholar 

  98. Targoff, I. N. et al. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum. 54, 3682–3689 (2006).

    CAS  PubMed  Google Scholar 

  99. Kaji, K. et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology (Oxford) 46, 25–28 (2007).

    CAS  Google Scholar 

  100. Targoff, I. N., Trieu, E., Levy-Neto, M., Prasertsuntarasai, T. & Miller, F. W. Autoantibodies to transcriptional intermediary factor 1-gamma (TIF1-g) in dermatomyositis [abstract]. Arthritis Rheum. 55 (Suppl.), S518 (2006).

    Google Scholar 

  101. Chinoy, H., Fertig, N., Oddis, C. V., Ollier, W. E. & Cooper, R. G. The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann. Rheum. Dis. 66, 1345–1349 (2007).

    PubMed  PubMed Central  Google Scholar 

  102. Hoshino, K. et al. Anti-MDA5 and anti-TIF1-γ antibodies have clinical significance for patients with dermatomyositis. Rheumatology (Oxford) 49, 1726–1733 (2010).

    CAS  Google Scholar 

  103. Gunawardena, H. et al. Clinical associations of autoantibodies to a p155/140 kDa doublet protein in juvenile dermatomyositis. Rheumatology (Oxford) 47, 324–328 (2008).

    CAS  Google Scholar 

  104. Oddis, C. V. et al. Clinical and serological characterisation of the anti-MJ antibody in childhood myositis. Arthritis Rheum. 40 (Suppl.), S139 (1997).

    Google Scholar 

  105. Targoff, I. N., Trieu, E. P., Levy-Neto, M., Fertig, N. & Oddis, C. V. Sera with autoantibodies to the MJ antigen react with NXP2. Arthritis Rheum. 56 (Suppl.), S787 (2007).

    Google Scholar 

  106. Gunawardena, H. et al. Autoantibodies to a 140-kd protein in juvenile dermatomyositis are associated with calcinosis. Arthritis Rheum. 60, 1807–1814 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sato, S. et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: Association with rapidly progressive interstitial lung disease. Arthritis Rheum. 60, 2193–2200 (2009).

    CAS  PubMed  Google Scholar 

  108. Gono, T. et al. Clinical manifestation and prognostic factor in anti-melanoma differentiation-associated gene 5 antibody-associated interstitial lung disease as a complication of dermatomyositis. Rheumatology (Oxford) 49, 1713–1719 (2010).

    CAS  Google Scholar 

  109. Betteridge, Z., Gunawardena, H., North, J., Slinn, J. & McHugh, N. Identification of a novel autoantibody directed against small ubiquitin-like modifier activating enzyme in dermatomyositis. Arthritis Rheum. 56, 3132–3137 (2007).

    CAS  PubMed  Google Scholar 

  110. Betteridge, Z. E. et al. Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann. Rheum. Dis. 68, 1621–1625 (2009).

    CAS  PubMed  Google Scholar 

  111. Reeves, W. H., Nigam, S. K. & Blobel, G. Human autoantibodies reactive with the signal-recognition particle. Proc. Natl Acad. Sci. USA 83, 9507–9511 (1986).

    CAS  PubMed  Google Scholar 

  112. Satoh, T. et al. Novel autoantibodies against 7SL RNA in patients with polymyositis/dermatomyositis. J. Rheumatol. 32, 1727–1733 (2005).

    CAS  PubMed  Google Scholar 

  113. Targoff, I. N., Johnson, A. E. & Miller, F. W. Antibody to signal recognition particle in polymyositis. Arthritis Rheum. 33, 1361–1370 (1990).

    CAS  PubMed  Google Scholar 

  114. Kao, A. H., Lacomis, D., Lucas, M., Fertig, N. & Oddis, C. V. Anti-signal recognition particle autoantibody in patients with and patients without idiopathic inflammatory myopathy. Arthritis Rheum. 50, 209–215 (2004).

    CAS  PubMed  Google Scholar 

  115. Takada, T. et al. Clinical and histopathological features of myopathies in Japanese patients with anti-SRP autoantibodies. Mod. Rheumatol. 19, 156–164 (2009).

    PubMed  Google Scholar 

  116. Hengstman, G. J. et al. Anti-signal recognition particle autoantibodies: marker of a necrotising myopathy. Ann. Rheum. Dis. 65, 1635–1638 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. de Sauvage Nolting, P. R., Buirma, R. J., Hutten, B. A., Kastelein, J. J. & Dutch ExPRESS Investigator Group. Two-year efficacy and safety of simvastatin 80 mg in familial hypercholesterolemia (the Examination of Probands and Relatives in Statin Studies with Familial Hypercholesterolemia [ExPRESS FH]). Am. J. Cardiol. 90, 181–184 (2002).

    CAS  PubMed  Google Scholar 

  118. Bruckert, E., Hayem, G., Dejager, S., Yau, C. & Begaud, B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovasc. Drugs Ther. 19, 403–414 (2005).

    CAS  PubMed  Google Scholar 

  119. Franc, S. et al. A comprehensive description of muscle symptoms associated with lipid-lowering drugs. Cardiovasc. Drugs Ther. 17, 459–465 (2003).

    CAS  PubMed  Google Scholar 

  120. Graham, D. J. et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 292, 2585–2590 (2004).

    CAS  PubMed  Google Scholar 

  121. Soininen, K., Niemi, M., Kilkki, E., Strandberg, T. & Kivisto, K. T. Muscle symptoms associated with statins: a series of twenty patients. Basic Clin. Pharmacol. Toxicol. 98, 51–54 (2006).

    CAS  PubMed  Google Scholar 

  122. Fauchais, A. L. et al. Polymyositis induced or associated with lipid-lowering drugs: five cases. Rev. Med. Interne 25, 294–298 (2004).

    PubMed  Google Scholar 

  123. Riesco-Eizaguirre, G., Arpa-Gutierrez, F. J., Gutierrez, M. & Toribio, E. Severe polymyositis with simvastatin use. Rev. Neurol. 37, 934–936 (2003).

    CAS  PubMed  Google Scholar 

  124. Vasconcelos, O. M. & Campbell, W. W. Dermatomyositis-like syndrome and HMG-CoA reductase inhibitor (statin) intake. Muscle Nerve 30, 803–807 (2004).

    PubMed  Google Scholar 

  125. Needham, M. et al. Progressive myopathy with up-regulation of MHC-I associated with statin therapy. Neuromuscul. Disord. 17, 194–200 (2007).

    PubMed  Google Scholar 

  126. Rowe, D., Isenberg, D. A. & Beverley, P. C. Monoclonal antibodies to human leucocyte antigens in polymyositis and muscular dystrophy. Clin. Exp. Immunol. 54, 327–336 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. van der Pas, J., Hengstman, G. J., ter Laak, H. J., Borm, G. F. & van Engelen, B. G. Diagnostic value of MHC class I staining in idiopathic inflammatory myopathies. J. Neurol. Neurosurg. Psychiatry. 75, 136–139 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sundaram, C., Uppin, M. S. & Meena, A. K. Major histocompatibility complex class I expression can be used as a diagnostic tool to differentiate idiopathic inflammatory myopathies from dystrophies. Neurol. India 56, 363–367 (2008).

    CAS  PubMed  Google Scholar 

  129. Mammen, A. L. et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 63, 713–721 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Martini, C. et al. 3-hydroxy 3-methylglutaryl coenzyme A reductase increase is essential for rat muscle differentiation. J. Cell. Physiol. 220, 524–530 (2009).

    CAS  PubMed  Google Scholar 

  131. Hill, C. L. et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. Lancet 357, 96–100 (2001).

    CAS  PubMed  Google Scholar 

  132. Norton, W. L., Velayos, E. & Robison, L. Endothelial inclusions in dermatomyositis. Ann. Rheum. Dis. 29, 67–72 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Emslie-Smith, A. M. & Engel, A. G. Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann. Neurol. 27, 343–356 (1990).

    CAS  PubMed  Google Scholar 

  134. Kissel, J. T., Mendell, J. R. & Rammohan, K. W. Microvascular deposition of complement membrane attack complex in dermatomyositis. N. Engl. J. Med. 314, 329–334 (1986).

    CAS  PubMed  Google Scholar 

  135. Kissel, J. T., Halterman, R. K., Rammohan, K. W. & Mendell, J. R. The relationship of complement-mediated microvasculopathy to the histologic features and clinical duration of disease in dermatomyositis. Arch. Neurol. 48, 26–30 (1991).

    CAS  PubMed  Google Scholar 

  136. Carpenter, S., Karpati, G., Rothman, S. & Watters, G. The childhood type of dermatomyositis. Neurology 26, 952–962 (1976).

    CAS  PubMed  Google Scholar 

  137. De Visser, M., Emslie-Smith, A. M. & Engel, A. G. Early ultrastructural alterations in adult dermatomyositis. Capillary abnormalities precede other structural changes in muscle. J. Neurol. Sci. 94, 181–192 (1989).

    CAS  PubMed  Google Scholar 

  138. Nagaraju, K. et al. Endothelial cell activation and neovascularization are prominent in dermatomyositis. J. Autoimmune Dis. 3, 2 (2006).

    PubMed  PubMed Central  Google Scholar 

  139. Grundtman, C., Tham, E., Ulfgren, A. K. & Lundberg, I. E. Vascular endothelial growth factor is highly expressed in muscle tissue of patients with polymyositis and patients with dermatomyositis. Arthritis Rheum. 58, 3224–3238 (2008).

    CAS  PubMed  Google Scholar 

  140. Pestronk, A., Schmidt, R. E. & Choksi, R. Vascular pathology in dermatomyositis and anatomic relations to myopathology. Muscle Nerve 42, 53–61 (2010).

    PubMed  Google Scholar 

  141. Greenberg, S. A. et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 57, 664–678 (2005).

    CAS  PubMed  Google Scholar 

  142. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    CAS  PubMed  Google Scholar 

  143. McNiff, J. M. & Kaplan, D. H. Plasmacytoid dendritic cells are present in cutaneous dermatomyositis lesions in a pattern distinct from lupus erythematosus. J. Cutan. Pathol. 35, 452–456 (2008).

    PubMed  Google Scholar 

  144. Salajegheh, M. et al. Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann. Neurol. 67, 53–63 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Magro, C. M., Segal, J. P., Crowson, A. N. & Chadwick, P. The phenotypic profile of dermatomyositis and lupus erythematosus: a comparative analysis. J. Cutan. Pathol. 37, 659–671 (2010).

    PubMed  Google Scholar 

  146. Greenberg, S. A. Dermatomyositis and type 1 interferons. Curr. Rheumatol. Rep. 12, 198–203 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Grimley, P. M. et al. Tubuloreticular inclusions in peripheral blood mononuclear cells related to systemic therapy with alpha-interferon. Lab. Invest. 52, 638–649 (1985).

    CAS  Google Scholar 

  148. Kuyama, J. et al. Formation of tubuloreticular inclusions in mitogen-stimulated human lymphocyte cultures by endogenous or exogenous alpha-interferon. Ultrastruct. Pathol. 10, 77–85 (1986).

    CAS  PubMed  Google Scholar 

  149. Feldman, D., Goldstein, A. L., Cox, D. C. & Grimley, P. M. Cultured human endothelial cells treated with recombinant leukocyte A interferon. Tubuloreticular inclusion formation, antiproliferative effect, and 2′, 5′ oligoadenylate synthetase induction. Lab. Invest. 58, 584–589 (1988).

    CAS  PubMed  Google Scholar 

  150. Walsh, R. J. et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 56, 3784–3792 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Baechler, E. C. et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med. 13, 59–68 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Casciola-Rosen, L. et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J. Exp. Med. 201, 591–601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Levine, S. M. Cancer and myositis: new insights into an old association. Curr. Opin. Rheumatol. 18, 620–624 (2006).

    CAS  PubMed  Google Scholar 

  154. Suber, T. L., Casciola-Rosen, L. & Rosen, A. Mechanisms of disease: autoantigens as clues to the pathogenesis of myositis. Nat. Clin. Pract. Rheumatol. 4, 201–209 (2008).

    CAS  PubMed  Google Scholar 

  155. Chinoy, H., Lamb, J. A., Ollier, W. E. & Cooper, R. G. An update on the immunogenetics of idiopathic inflammatory myopathies: major histocompatibility complex and beyond. Curr. Opin. Rheumatol. 21, 588–593 (2009).

    CAS  PubMed  Google Scholar 

  156. O'Hanlon, T. P. et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine (Baltimore) 85, 111–127 (2006).

    CAS  Google Scholar 

  157. Chinoy, H., Ollier, W. E. & Cooper, R. G. Have recent immunogenetic investigations increased our understanding of disease mechanisms in the idiopathic inflammatory myopathies? Curr. Opin. Rheumatol. 16, 707–713 (2004).

    PubMed  Google Scholar 

  158. Mierau, R. et al. An update on HLA association of Mi-2 autoantibodies: the association with a tryptophan at position 9 of the HLA-DRbeta chain is strong but not absolute. Arthritis Rheum. 42, 1552–1553 (1999).

    CAS  PubMed  Google Scholar 

  159. Shamim, E. A. et al. Differences in idiopathic inflammatory myopathy phenotypes and genotypes between Mesoamerican Mestizos and North American Caucasians: ethnogeographic influences in the genetics and clinical expression of myositis. Arthritis Rheum. 46, 1885–1893 (2002).

    PubMed  Google Scholar 

  160. O'Hanlon, T. P. et al. Immunoglobulin gene polymorphisms are susceptibility factors in clinical and autoantibody subgroups of the idiopathic inflammatory myopathies. Arthritis Rheum. 58, 3239–3246 (2008).

    PubMed  PubMed Central  Google Scholar 

  161. Mamyrova, G. et al. Cytokine gene polymorphisms as risk and severity factors for juvenile dermatomyositis. Arthritis Rheum. 58, 3941–3950 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A. Mammen is supported by the NIH (grant K08-AR-054,783). C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares an association with the following organization: Johns Hopkins University. See the article online for full details of the relationship. The journal Chief Editor H. Wood and the CME questions author C. P. Vega declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mammen, A. Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat Rev Neurol 7, 343–354 (2011). https://doi.org/10.1038/nrneurol.2011.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing