Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic changes in patients with multiple sclerosis

Abstract

Epigenetic changes influence gene expression without altering the DNA sequence. DNA methylation, histone modification and microRNA-associated post-transcriptional gene silencing are three key epigenetic mechanisms. Multiple sclerosis (MS) is a disease of the CNS with both inflammatory and neurodegenerative features. Although studies on epigenetic changes in MS only began in the past decade, a growing body of literature suggests that epigenetic changes may be involved in the development of MS, possibly by mediating the effects of environmental risk factors, such as smoking, vitamin D deficiency and Epstein–Barr virus infection. Such studies are also beginning to deliver important insights into the pathophysiology of MS. For example, inflammation and demyelination in relapsing–remitting MS may be related to the increased differentiation of T cells toward a T-helper 17 phenotype, which is an important epigenetically regulated pathophysiological mechanism. In progressive MS, other epigenetically regulated mechanisms, such as increased histone acetylation and citrullination of myelin basic protein, might exacerbate the disease course. In this Review, we summarize current knowledge on the role of epigenetic changes in the pathophysiology of MS.

Key Points

  • Multiple sclerosis (MS) has both inflammatory and neurodegenerative characteristics, with striking interindividual differences in disease course and severity

  • A low concordance rate for MS in monozygotic twins and enhanced maternal transmission of risk alleles suggest that epigenetic changes influence MS susceptibility

  • The effects of environmental risk factors, such as smoking, vitamin D level and Epstein–Barr virus infection, on the development and course of MS might be mediated by epigenetic mechanisms

  • In patients with relapsing–remitting MS, macrophage activation and differentiation of T-helper 17 cells are important epigenetically regulated proinflammatory mechanisms

  • In patients with progressive MS, citrullination of myelin basic protein and CNS neurosteroid synthesis are important epigenetically regulated neurodegenerative mechanisms

  • Future therapies for MS that target these epigenetic mechanisms might utilize histone deacetylase inhibitors, DNA methyltransferase inhibitors, and oligonucleotides containing modified locked nucleic acids

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA methylation.
Figure 2: Translational repression of proteins by miRNAs.
Figure 3: Epigenetic control of TH17-cell differentiation by miR-326.
Figure 4: Epigenetic regulation of PAD2 expression in MS involves DNA methylation.
Figure 5: Silencing of neurosteroid synthesis by miR-155, miR-338 and miR-491.

Similar content being viewed by others

References

  1. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M. & Weinshenker, B. G. Multiple sclerosis. N. Engl. J. Med. 343, 938–952 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Leray, E. et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain 133, 1900–1913 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Confavreux, C., Vukusic, S. & Adeleine, P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 126, 770–782 (2003).

    Article  PubMed  Google Scholar 

  4. Koch, M., Kingwell, E., Rieckmann, P. & Tremlett, H. The natural history of primary progressive multiple sclerosis. Neurology 73, 1996–2002 (2009).

    Article  PubMed  Google Scholar 

  5. Scalfari, A. et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain 133, 1914–1929 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Confavreux, C., Vukusic, S., Moreau, T. & Adeleine, P. Relapses and progression of disability in multiple sclerosis. N. Engl. J. Med. 343, 1430–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Carton, H. et al. Risks of multiple sclerosis in relatives of patients in Flanders, Belgium. J. Neurol. Neurosurg. Psychiatry 62, 329–333 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sadovnick, A. D., Baird, P. A. & Ward, R. H. Multiple sclerosis: updated risks for relatives. Am. J. Med. Genet. 29, 533–541 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Robertson, N. P. et al. Age-adjusted recurrence risks for relatives of patients with multiple sclerosis. Brain 119, 449–455 (1996).

    Article  PubMed  Google Scholar 

  10. Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 (Suppl.), 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Skinner, M. K., Manikkam, M. & Guerrero-Bosagna, C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol. Metab. 21, 214–222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Weber, M. & Schübeler, D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19, 273–280 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Dieker, J. & Muller, S. Epigenetic histone code and autoimmunity. Clin. Rev. Allergy Immunol. 39, 78–84 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Brooks, W. H., Le Dantec, C., Pers, J.-O., Youinou, P. & Renaudineau, Y. Epigenetics and autoimmunity. J. Autoimmun. 34, J207–J219 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Bernstein, E. & Allis, C. D. RNA meets chromatin. Genes Dev. 19, 1635–1655 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hwang, H.-W. & Mendell, J. T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 94, 776–780 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sevignani, C., Calin, G. A., Siracusa, L. D. & Croce, C. M. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm. Genome 17, 189–202 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang, T.-C. & Mendell, J. T. MicroRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet. 8, 215–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Fabbri, M., Ivan, M., Cimmino, A., Negrini, M. & Calin, G. A. Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin. Biol. Ther. 7, 1009–1019 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Chao, M. J. et al. Parent-of-origin effects at the major histocompatibility complex in multiple sclerosis. Hum. Mol. Genet. 19, 3679–3689 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Ebers, G. C. et al. A population-based study of multiple sclerosis in twins. N. Engl. J. Med. 315, 1638–1642 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Kuusisto, H. et al. Concordance and heritability of multiple sclerosis in Finland: study on a nationwide series of twins. Eur. J. Neurol. 15, 1106–1110 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Ristori, G. et al. Multiple sclerosis in twins from continental Italy and Sardinia: a nationwide study. Ann. Neurol. 59, 27–34 (2006).

    Article  PubMed  Google Scholar 

  28. [No authors listed] Multiple sclerosis in 54 twinships: concordance rate is independent of zygosity. French Research Group on Multiple Sclerosis. Ann. Neurol. 32, 724–727 (1992).

  29. Hansen, T. et al. Concordance for multiple sclerosis in Danish twins: an update of a nationwide study. Mult. Scler. 11, 504–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Baranzini, S. E. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464, 1351–1356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Junker, A. et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132, 3342–3352 (2009).

    Article  PubMed  Google Scholar 

  32. Haasch, D. et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell. Immunol. 217, 78–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Thai, T.-H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Teng, G. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28, 621–629 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teng, G. & Papavasiliou, F. N. Shhh! Silencing by microRNA-155. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 631–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steinman, L. A rush to judgment on Th17. J. Exp. Med. 205, 1517–1522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tzartos, J. S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murugaiyan, G., Beynon, V., Mittal, A., Joller, N. & Weiner, H. L. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 187, 2213–2221 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Du, C. et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. 10, 1252–1259 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Cox, M. B. et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS ONE 5, e12132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Janson, P. C. et al. Profiling of CD4+ T cells with epigenetic immune lineage analysis. J. Immunol. 186, 92–102 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Liggett, T. et al. Methylation patterns of cell-free plasma DNA in relapsing–remitting multiple sclerosis. J. Neurol. Sci. 290, 16–21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Otaegui, D. et al. Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS ONE 4, e6309 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chestnut, B. A. et al. Epigenetic regulation of motor neuron cell death through DNA methylation. J. Neurosci. 31, 16619–16636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moscarello, M. A., Mastronardi, F. G. & Wood, D. D. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem. Res. 32, 251–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Moscarello, M. A., Wood, D. D., Ackerley, C. & Boulias, C. Myelin in multiple sclerosis is developmentally immature. J. Clin. Invest. 94, 146–154 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mastronardi, F. G., Noor, A., Wood, D. D., Paton, T. & Moscarello, M. A. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J. Neurosci. Res. 85, 2006–2016 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Lamensa, J. W. & Moscarello, M. A. Deimination of human myelin basic protein by a peptidylarginine deiminase from bovine brain. J. Neurochem. 61, 987–996 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Pedre, X. et al. Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J. Neurosci. 31, 3435–3445 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noorbakhsh, F. et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain 134, 2703–2721 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288–299 (2007).

    Article  PubMed  Google Scholar 

  53. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann. Neurol. 61, 504–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Hernán, M. A., Olek, M. J. & Ascherio, A. Cigarette smoking and incidence of multiple sclerosis. Am. J. Epidemiol. 154, 69–74 (2001).

    Article  PubMed  Google Scholar 

  55. Healy, B. C. et al. Smoking and disease progression in multiple sclerosis. Arch. Neurol. 66, 858–864 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pittas, F. et al. Smoking is associated with progressive disease course and increased progression in clinical disability in a prospective cohort of people with multiple sclerosis. J. Neurol. 256, 577–585 (2009).

    Article  PubMed  Google Scholar 

  57. Di Pauli, F. et al. Smoking is a risk factor for early conversion to clinically definite multiple sclerosis. Mult. Scler. 14, 1026–1030 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Hernán, M. A. et al. Cigarette smoking and the progression of multiple sclerosis. Brain 128, 1461–1465 (2005).

    Article  PubMed  Google Scholar 

  59. Koch, M., van Harten, A., Uyttenboogaart, M. & De Keyser, J. Cigarette smoking and progression in multiple sclerosis. Neurology 69, 1515–1520 (2007).

    Article  PubMed  Google Scholar 

  60. Wan, E. S. et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum. Mol. Genet. 21, 3073–3082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koturbash, I., Beland, F. A. & Pogribny, I. P. Role of epigenetic events in chemical carcinogenesis—a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol. Mech. Methods 21, 289–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Ma, Y. T., Collins, S. I., Young, L. S., Murray, P. G. & Woodman, C. B. J. Smoking initiation is followed by the early acquisition of epigenetic change in cervical epithelium: a longitudinal study. Br. J. Cancer 104, 1500–1504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marczylo, E. L., Amoako, A. A., Konje, J. C., Gant, T. W. & Marczylo, T. H. Smoking induces differential miRNA expression in human spermatozoa: A potential transgenerational epigenetic concern? Epigenetics 7, 432–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Ito, K. et al. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 15, 1110–1112 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296, 2832–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Smolders, J., Menheere, P., Kessels, A., Damoiseaux, J. & Hupperts, R. Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult. Scler. 14, 1220–1224 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Simpson, S. et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann. Neurol. 68, 193–203 (2010).

    CAS  PubMed  Google Scholar 

  68. Simpson, S. Jr, Blizzard, L., Otahal, P., Van der Mei, I. & Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp.2011.240432.

  69. Pereira, F. et al. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle 11, 1081–1089 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Pereira, F. et al. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum. Mol. Genet. 20, 4655–4665 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Joshi, S. et al. 1,25-dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell. Biol. 31, 3653–3669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ascherio, A. et al. Epstein–Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Handel, A. E. et al. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS ONE 5, (2010).

  74. Niller, H. H., Wolf, H. & Minarovits, J. Epigenetic dysregulation of the host cell genome in Epstein–Barr virus-associated neoplasia. Semin. Cancer Biol. 19, 158–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Tsai, C.-N., Tsai, C.-L., Tse, K.-P., Chang, H.-Y. & Chang, Y.-S. The Epstein–Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc. Natl Acad. Sci. USA 99, 10084–10089 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsai, C.-L. et al. Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH2-terminal kinase signaling. Cancer Res. 66, 11668–11676 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kwong, J. et al. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin. Cancer Res. 8, 131–137 (2002).

    CAS  PubMed  Google Scholar 

  78. Reddy, P. et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest. 118, 2562–2573 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nencioni, A. et al. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin. Cancer Res. 13, 3933–3941 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Shen, S., Li, J. & Casaccia-Bonnefil, P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell Biol. 169, 577–589 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dasgupta, S., Zhou, Y., Jana, M., Banik, N. L. & Pahan, K. Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J. mice at multiple steps. J. Immunol. 170, 3874–3882 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Camelo, S. et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164, 10–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Gray, S. G. & Dangond, F. Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis. Epigenetics 1, 67–75 (2006).

    Article  PubMed  Google Scholar 

  84. Faraco, G., Cavone, L. & Chiarugi, A. The therapeutic potential of HDAC inhibitors in the treatment of multiple sclerosis. Mol. Med. 17, 442–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Penas, C. et al. Valproate reduces CHOP levels and preserves oligodendrocytes and axons after spinal cord injury. Neuroscience 178, 33–44 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Candelaria, M. et al. Hydralazine and magnesium valproate as epigenetic treatment for myelodysplastic syndrome. Preliminary results of a phase-II trial. Ann. Hematol. 90, 379–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Elmén, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. W. Koch and O. Kovalchuk researched data for the article. M. W. Koch, L. M. Metz and O. Kovalchuk provided substantial contributions to discussion of the article, writing and review and/or editing before submission of the manuscript.

Corresponding author

Correspondence to Marcus W. Koch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, M., Metz, L. & Kovalchuk, O. Epigenetic changes in patients with multiple sclerosis. Nat Rev Neurol 9, 35–43 (2013). https://doi.org/10.1038/nrneurol.2012.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing