Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reappraising neuropathic pain in humans—how symptoms help disclose mechanisms

Abstract

Neuropathic pain—that is, pain arising directly from a lesion or disease that affects the somatosensory system—is a common clinical problem, and typically causes patients intense distress. Patients with neuropathic pain have sensory abnormalities on clinical examination and experience pain of diverse types, some spontaneous and others provoked. Spontaneous pain typically manifests as ongoing burning pain or paroxysmal electric shock-like sensations. Provoked pain includes pain induced by various stimuli or even gentle brushing (dynamic mechanical allodynia). Recent clinical and neurophysiological studies suggest that the various pain types arise through distinct pathophysiological mechanisms. Ongoing burning pain primarily reflects spontaneous hyperactivity in nociceptive-fibre pathways, originating from 'irritable' nociceptors, regenerating nerve sprouts or denervated central neurons. Paroxysmal sensations can be caused by several mechanisms; for example, electric shock-like sensations probably arise from high-frequency bursts generated in demyelinated non-nociceptive Aβ fibres. Most human and animal findings suggest that brush-evoked allodynia originates from Aβ fibres projecting onto previously sensitized nociceptive neurons in the dorsal horn, with additional contributions from plastic changes in the brainstem and thalamus. Here, we propose that the emerging mechanism-based approach to the study of neuropathic pain might aid the tailoring of therapy to the individual patient, and could be useful for drug development.

Key Points

  • Clinical symptoms of neuropathic pain can arise through various pathophysiological mechanisms, which has implications for diagnosis and treatment

  • The most common neuropathic pain is ongoing burning pain, which reflects spontaneous hyperactivity in nociceptive-fibre pathways originating from 'irritable' nociceptors, regenerating sprouts or denervated central neurons

  • In patients with burning pain, the clinical sensory deficit is less severe for 'irritable' nociceptors, and more severe in the case of denervated central neurons; sensory deficit without pain probably implies functional deafferentation

  • Electric shock-like paroxysmal sensations probably arise through high-frequency ectopic bursts generated in demyelinated, non-nociceptive Aβ fibres

  • Mechanical dynamic allodynia is mediated by non-nociceptive Aβ fibres that activate central pain pathways; in peripheral neuropathies, sensitized C-nociceptors probably also contribute to maintenance of allodynia and to central sensitization

  • Sensory examination and neurophysiological techniques help to identify patients at high risk of allodynia; in peripheral and central pain syndromes, risk of allodynia increases if thermal-pain pathways are partially preserved

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laboratory testing in patients with neuropathic pain.
Figure 2: Models for ongoing burning pain in primary sensory neuron disease.
Figure 3: Correlations between neurophysiological abnormalities and pain.18,20,22

Similar content being viewed by others

References

  1. Treede, R.-D. et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70, 1630–1635 (2008).

    CAS  PubMed  Google Scholar 

  2. Attal, N., Lanteri-Minet, M., Laurent, B., Fermanian, J. & Bouhassira, D. The specific disease burden of neuropathic pain: results of a French nationwide survey. Pain 152, 2836–2843 (2011).

    PubMed  Google Scholar 

  3. Bouhassira, D., Lantéri-Minet, M., Attal, N., Laurent, B. & Touboul, C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 136, 380–387 (2008).

    PubMed  Google Scholar 

  4. Attal, N. et al. Neuropathic pain: are there distinct subtypes depending on the aetiology or anatomical lesion? Pain 138, 343–353 (2008).

    CAS  PubMed  Google Scholar 

  5. Attal, N. et al. Assessing symptom profiles in neuropathic pain clinical trials: can it improve outcome? Eur. J. Pain 15, 441–443 (2011).

    PubMed  Google Scholar 

  6. Baron, R., Förster, M. & Binder, A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol. 11, 999–1005 (2012).

    PubMed  Google Scholar 

  7. Garcia-Larrea, L. Objective pain diagnostics: clinical neurophysiology. Neurophysiol. Clin. 42, 187–197 (2012).

    CAS  PubMed  Google Scholar 

  8. Hansson, P. Difficulties in stratifying neuropathic pain by mechanisms. Eur. J. Pain 7, 353–357 (2003).

    PubMed  Google Scholar 

  9. Backonja, M. M. et al. Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities. Clin. J. Pain 25, 641–647 (2009).

    PubMed  Google Scholar 

  10. Maier, C. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150, 439–450 (2010).

    CAS  PubMed  Google Scholar 

  11. Krumova, E. K., Geber, C., Westermann, A. & Maier, C. Neuropathic pain: is quantitative sensory testing helpful? Curr. Diab. Rep. 12, 393–402 (2012).

    PubMed  Google Scholar 

  12. Tesfaye, S. et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33, 2285–2293 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Cruccu, G. et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur. J. Neurol. 17, 1010–1018 (2010).

    CAS  PubMed  Google Scholar 

  14. Shy, M. E. et al. Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 25, 898–904 (2003).

    Google Scholar 

  15. Ochoa, J. L. & Verdugo, R. J. Neuropathic pain syndrome displayed by malingerers. J. Neuropsychiatry Clin. Neurosci. 22, 278–286 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Cruccu, G. et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin. Neurophysiol. 119, 1705–1719 (2008).

    CAS  PubMed  Google Scholar 

  17. Cruccu, G. et al. AAN–EFNS guidelines on trigeminal neuralgia management. Eur. J. Neurol. 15, 1013–1028 (2008).

    CAS  PubMed  Google Scholar 

  18. Garcia-Larrea, L. et al. Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain 125, 2766–2781 (2002).

    PubMed  Google Scholar 

  19. Truini, A. et al. Mechanisms of pain in distal symmetric polyneuropathy: a combined clinical and neurophysiological study. Pain 150, 516–521 (2010).

    CAS  PubMed  Google Scholar 

  20. Truini, A. et al. Differential involvement of A-delta and A-beta fibres in neuropathic pain related to carpal tunnel syndrome. Pain 145, 105–109 (2009).

    CAS  PubMed  Google Scholar 

  21. Truini, A. et al. Mechanisms of pain in multiple sclerosis: a combined clinical and neurophysiological study. Pain 153, 2048–2054 (2012).

    PubMed  Google Scholar 

  22. Truini, A. et al. Pathophysiology of pain in postherpetic neuralgia: a clinical and neurophysiological study. Pain 140, 405–410 (2008).

    CAS  PubMed  Google Scholar 

  23. Leandri, M. et al. Measurement of skin temperature after infrared laser stimulation. Neurophysiol. Clin. 36, 207–218 (2006).

    CAS  PubMed  Google Scholar 

  24. Treede, R. D., Meyer, R. A., Raja, S. N. & Campbell, J. N. Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J. Physiol. 15, 747–758 (1995).

    Google Scholar 

  25. Perchet, C. et al. Do we activate specifically somatosensory thin fibres with the concentric planar electrode? A scalp and intracranial EEG study. Pain 153, 1244–1252 (2012).

    PubMed  Google Scholar 

  26. De Tommaso, M. et al. A comparative study of cortical responses evoked by transcutaneous electrical vs CO2 laser stimulation. Clin. Neurophysiol. 122, 2482–2487 (2011).

    PubMed  Google Scholar 

  27. Jørum, E. & Schmelz, M. Chapter 29. Microneurography in the assessment of neuropathic pain. Handb. Clin. Neurol. 81, 427–438 (2006).

    PubMed  Google Scholar 

  28. Serra, J. Re-emerging microneurography. J. Physiol. 15, 295–296 (2009).

    Google Scholar 

  29. Lauria, G. et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur. J. Neurol. 17, 903–912 (2010).

    CAS  PubMed  Google Scholar 

  30. Vickova-Moravcova, E., Bednarik, J., Belobradkova, J. & Sommer, C. Small-fibre involvement in diabetic patients with neuropathic foot pain. Diabet. Med. 25, 692–699 (2008).

    Google Scholar 

  31. Pan, C. L. et al. Cutaneous innervation in Guillain–Barré syndrome: pathology and clinical correlations. Brain 126, 386–397 (2003).

    PubMed  Google Scholar 

  32. Ragé, M. et al. The time course of CO2 laser-evoked responses and of skin nerve fibre markers after topical capsaicin in human volunteers. Clin. Neurophysiol. 121, 1256–1266 (2010).

    PubMed  Google Scholar 

  33. Marchettini, P. The burning case of neuropathic pain wording. Pain 114, 313–314 (2005).

    CAS  PubMed  Google Scholar 

  34. Bouhassira, D. et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 114, 29–36 (2005).

    PubMed  Google Scholar 

  35. Tasker, R. R., Organ, L. W. & Hawrylyshyn, P. Deafferentation and causalgia. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 58, 305–329 (1980).

    CAS  PubMed  Google Scholar 

  36. Djouhri, L., Koutsikou, S., Fang, X., McMullan, S. & Lawson, S. N. Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J. Neurosci. 26, 1281–1292 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Han, H. C., Lee, D. H. & Chung J. M. Characteristics of ectopic discharges in a rat neuropathic pain model. Pain 84, 253–261 (2000).

    CAS  PubMed  Google Scholar 

  39. Ørstavik, K. et al. Abnormal function of C-fibers in patients with diabetic neuropathy. J. Neurosci. 26, 11287–11294 (2006).

    PubMed  PubMed Central  Google Scholar 

  40. Cline, M. A., Ochoa, J. & Torebjörk, H. E. Chronic hyperalgesia and skin warming caused by sensitized C nociceptors. Brain 112, 621–647 (1989).

    PubMed  Google Scholar 

  41. Kleggetveit, I. P. et al. High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 153, 2040–2047 (2012).

    CAS  PubMed  Google Scholar 

  42. Serra, J. Microneurography: towards a biomarker of spontaneous pain. Pain 153, 1989–1990 (2012).

    PubMed  Google Scholar 

  43. Ochoa, J. L. Intraneural microstimulation in humans. Neurosci. Lett. 19, 162–167 (2010).

    Google Scholar 

  44. Casanova-Molla, J., Grau-Junyent, J. M., Morales, M. & Valls-Solé, J. On the relationship between nociceptive evoked potentials and intraepidermal nerve fiber density in painful sensory polyneuropathies. Pain 152, 410–418 (2011).

    PubMed  Google Scholar 

  45. Lauria, G. et al. Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology 61, 631–636 (2003).

    CAS  PubMed  Google Scholar 

  46. Amir, R., Kocsis, J. D. & Devor, M. Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons. J. Neurosci. 25, 2576–2585 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, G. et al. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J. Neurosci. 22, 7746–7753 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zimmermann, M. Pathobiology of neuropathic pain. Eur. J. Pharmacol. 429, 23–37 (2001).

    CAS  PubMed  Google Scholar 

  49. Bostock, H., Campero, M., Serra, J. & Ochoa, J. L. Temperature-dependent double spikes in C-nociceptors of neuropathic pain patients. Brain 128, 2154–2163 (2005).

    CAS  PubMed  Google Scholar 

  50. Campbell, J. N. & Meyer, R. A. Mechanisms of neuropathic pain. Neuron 52, 77–92 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fields, H. L., Rowbotham, M. & Baron, R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol. Dis. 5, 209–227 (1998).

    CAS  PubMed  Google Scholar 

  52. Craner, M. J., Klein, J. P., Renganathan, M., Black, J. A. & Waxman, S. G. Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann. Neurol. 52, 786–792 (2002).

    CAS  PubMed  Google Scholar 

  53. Devor, M. Sodium channels and mechanisms of neuropathic pain. J. Pain 7 (Suppl. 1), S3–S12 (2006).

    CAS  PubMed  Google Scholar 

  54. Sommer, C. Painful neuropathies. Curr. Opin. Neurol. 16, 623–628 (2003).

    PubMed  Google Scholar 

  55. Choi, J. S. et al. Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nat. Rev. Neurol. 7, 51–55 (2011).

    CAS  PubMed  Google Scholar 

  56. Hoeijmakers, J. G., Faber, C. G., Lauria, G., Merkies, I. S. & Waxman, S. G. Small-fibre neuropathies—advances in diagnosis, pathophysiology and management. Nat. Rev. Neurol. 29, 369–379 (2012).

    Google Scholar 

  57. Gold, M. S. et al. Redistribution of NaV1.8 in uninjured axons enables neuropathic pain. J. Neurosci. 23, 158–166 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rowbotham, M. C., Davies, P. S. & Fields, H. L. Topical lidocaine gel relieves postherpetic neuralgia. Ann. Neurol. 37, 246–253 (1995).

    CAS  PubMed  Google Scholar 

  59. Rowbotham, M. C., Davies, P. S., Verkempinck, C. & Galer, B. S. Lidocaine patch: double-blind controlled study of a new treatment method for post-herpetic neuralgia. Pain 65, 39–44 (1996).

    CAS  PubMed  Google Scholar 

  60. Devor, M., Govrin-Lippmann, R. & Angelides, K. Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J. Neurosci. 13, 1976–1992 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yasuda, H. et al. Diabetic neuropathy and nerve regeneration. Prog. Neurobiol. 69, 229–285 (2003).

    CAS  PubMed  Google Scholar 

  62. Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. Long-term synaptic potentiation. Science 4, 724–728 (1988).

    Google Scholar 

  63. Okuno, H. et al. Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149, 886–898 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, J. H., Ko, G. Y., Kelly, P. T. Cellular and molecular bases of memory: synaptic and neuronal plasticity. J. Clin. Neurophysiol. 14, 264–293 (1997).

    CAS  PubMed  Google Scholar 

  65. Kurvers, H. et al. Partial peripheral neuropathy and denervation induced adrenoceptor supersensitivity. Functional studies in an experimental model. J. Acta Orthop. Belg. 64, 64–70 (1998).

    CAS  Google Scholar 

  66. Fitzek, S. et al. Mechanisms and predictors of chronic facial pain in lateral medullary infarction. Ann. Neurol. 49, 493–500 (2001).

    CAS  PubMed  Google Scholar 

  67. Defrin, R., Ohry, A., Blumen, N. & Urca, G. Characterization of chronic pain and somatosensory function in spinal cord injury subjects. Pain 89, 253–263 (2001).

    CAS  PubMed  Google Scholar 

  68. Hains, B. C., Saab, C. Y. & Waxman, S. G. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain 128, 2359–2371 (2005).

    PubMed  Google Scholar 

  69. Magnin, M., Morel, A. & Jeanmonod, D. Toward a unified theory of positive symptoms. Neurophysiol. Clin. 35, 154–161 (2005).

    CAS  PubMed  Google Scholar 

  70. Waxman, S. G. & Hains, B. C. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci. 29, 207–215 (2006).

    CAS  PubMed  Google Scholar 

  71. Whitt, J. L., Masri, R., Pulimood, N. S. & Keller, A. Pathological activity in mediodorsal thalamus of rats with spinal cord injury pain. J. Neurosci. 33, 3915–3926 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sang, C. N., Gracely, R. H., Max, M. B. & Bennett, G. J. Capsaicin-evoked mechanical allodynia and hyperalgesia cross nerve territories. Evidence for a central mechanism. Anesthesiology 85, 491–496 (1996).

    CAS  PubMed  Google Scholar 

  73. Zanette, G., Cacciatori, C. & Tamburin, S. Central sensitization in carpal tunnel syndrome with extraterritorial spread of sensory symptoms. Pain 148, 227–236 (2010).

    PubMed  Google Scholar 

  74. Baron, R. Neuropathic pain—a clinical perspective. Nat. Clin. Pract. Neurol. 2, 95–106 (2006).

    PubMed  Google Scholar 

  75. Ochoa, J., Fowler, T. J. & Gilliatt, R. W. Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet. J. Anat. 113, 433–455 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cruccu, G. et al. Trigeminal neuralgia and pain related to multiple sclerosis. Pain 143, 186–191 (2009).

    CAS  PubMed  Google Scholar 

  77. Gass, A. et al. Trigeminal neuralgia in patients with multiple sclerosis: lesion localization with magnetic resonance imaging. Neurology 49, 1142–1144 (1997).

    CAS  PubMed  Google Scholar 

  78. Love, S. & Coakham, H. B. Trigeminal neuralgia: pathology and pathogenesis. Brain 124, 2347–2360 (2001).

    CAS  PubMed  Google Scholar 

  79. Burchiel, K. J. Ectopic impulse generation in focally demyelinated trigeminal nerve. Exp. Neurol. 69, 423–429 (1980).

    CAS  PubMed  Google Scholar 

  80. Burchiel, K. J. Abnormal impulse generation in focally demyelinated trigeminal roots. J. Neurosurg. 53, 674–683 (1980).

    CAS  PubMed  Google Scholar 

  81. Kuroki, A. & Møller, A. R. Facial nerve demyelination and vascular compression are both needed to induce facial hyperactivity: a study in rats. Acta Neurochir. (Wien) 126, 149–157 (1994).

    CAS  Google Scholar 

  82. Valls-Solé, J. Electrodiagnostic studies of the facial nerve in peripheral facial palsy and hemifacial spasm. Muscle Nerve 36, 14–20 (2007).

    PubMed  Google Scholar 

  83. Valls-Solé, J. Facial palsy, postparalytic facial syndrome, and hemifacial spasm. Mov. Disord. 17 (Suppl. 2), S49–S52 (2002).

    PubMed  Google Scholar 

  84. Daniele, C. A. & MacDermott, A. B. Low-threshold primary afferent drive onto GABAergic interneurons in the superficial dorsal horn of the mouse. J. Neurosci. 29, 686–695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, X., Eschenfelder, S., Blenk, K. H., Jänig, W. & Häbler, H. Spontaneous activity of axotomized afferent neurons after L5 spinal nerve injury in rats. Pain 84, 309–318 (2000).

    CAS  PubMed  Google Scholar 

  86. Wallace, V. C., Cottrell, D. F., Brophy, P. J. & Fleetwood-Walker, S. M. Focal lysolecithin-induced demyelination of peripheral afferents results in neuropathic pain behavior that is attenuated by cannabinoids. J. Neurosci. 15, 3221–3233 (2003).

    Google Scholar 

  87. Zhu, Y. F. & Henry, J. L. Excitability of Aβ sensory neurons is altered in an animal model of peripheral neuropathy. BMC Neurosci. 13, 15 (2012).

    PubMed  PubMed Central  Google Scholar 

  88. Zhu, Y. L., Xie, Z. L., Wu, Y. W., Duan, W. R. & Xie, Y. K. Early demyelination of primary A-fibers induces a rapid-onset of neuropathic pain in rat. Neuroscience 200, 186–198 (2012).

    CAS  PubMed  Google Scholar 

  89. Amir, R. & Devor, M. Functional cross-excitation between afferent A- and C-neurons in dorsal root ganglia. Neuroscience 95, 189–195 (2000).

    CAS  PubMed  Google Scholar 

  90. Cervero, F. & Laird, J. M. Mechanisms of allodynia: interactions between sensitive mechanoreceptors and nociceptors. Neuroreport 31, 526–528 (1996).

    Google Scholar 

  91. Craig, A. D. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 26, 1–30 (2003).

    CAS  PubMed  Google Scholar 

  92. Aichaoui, F., Mertens, P. & Sindou, M. Dorsal root entry zone lesioning for pain after brachial plexus avulsion: results with special emphasis on differential effects on the paroxysmal versus the continuous components. A prospective study in a 29-patient consecutive series. Pain 152, 1923–1930 (2011).

    PubMed  Google Scholar 

  93. Ali, M. et al. Differential efficacy of electric motor cortex stimulation and lesioning of the dorsal root entry zone for continuous vs paroxysmal pain after brachial plexus avulsion. Neurosurgery 68, 1252–1257 (2011).

    PubMed  Google Scholar 

  94. Sindou, M. Surgery in the DREZ for refractory neuropathic pain after spinal cord/cauda equina injury. World Neurosurg. 75, 447–448 (2011).

    PubMed  Google Scholar 

  95. Koroschetz, J. et al. Fibromyalgia and neuropathic pain—differences and similarities. A comparison of 3057 patients with diabetic painful neuropathy and fibromyalgia. BMC Neurol. 25, 55 (2011).

    Google Scholar 

  96. Devor, M. in Wall and Melzack's Textbook of Pain (eds McMahon, S. B. & Koltzenburg, M.) 905–927 (Elsevier, 2006).

    Google Scholar 

  97. Devor, M. Ectopic discharge in Aβ afferents as a source of neuropathic pain. Exp. Brain Res. 196, 115–128 (2009).

    CAS  PubMed  Google Scholar 

  98. Campbell, J. N., Raja, S. N., Meyer, R. A. & Mackinnon, S. E. Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 32, 89–94 (1988).

    CAS  PubMed  Google Scholar 

  99. Lindblom, U. & Verrillo, R. T. Sensory functions in chronic neuralgia. J. Neurol. Neurosurg. Psychiatry 42, 422–435 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Landerholm, Å. H. & Hansson, P. T. Mechanisms of dynamic mechanical allodynia and dysesthesia in patients with peripheral and central neuropathic pain. Eur. J. Pain 15, 498–503 (2011).

    PubMed  Google Scholar 

  101. Koltzenburg, M., Torebjork, H. E. & Wahren, L. K. Nociceptor modulated central sensitization causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain. Brain 117, 579–591 (1994).

    PubMed  Google Scholar 

  102. Liu, C. N. et al. Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85, 503–521 (2000).

    CAS  PubMed  Google Scholar 

  103. Michaelis, M., Blenk, K. H., Jänig. W. & Vogel, C. Development of spontaneous activity and mechanosensitivity in axotomized afferent nerve fibers during the first hours after nerve transection in rats. J. Neurophysiol. 74, 1020–1027 (1995).

    CAS  PubMed  Google Scholar 

  104. Tal, M., Kim, J., Back, S. K., Na, H. S. & Devor, M. in Proceedings of the 11th World Congress on Pain (eds Flor, H. et al.) 119–130 (IASP Press, 2006).

    Google Scholar 

  105. Sandkuhler, J. Learning and memory in pain pathways. Pain 88, 113–118 (2000).

    CAS  PubMed  Google Scholar 

  106. Malcangio, M., Ramer, M. S., Jones, M. G. & McMahon, S. B. Abnormal substance P release from the spinal cord following injury to primary sensory neurons. Eur. J. Neurosci. 12, 397–399 (2000).

    CAS  PubMed  Google Scholar 

  107. Michael, G. J., Averill, S., Shortland, P. J., Yan, Q. & Priestley, J. V. Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei. Eur. J. Neurosci. 11, 3539–3551 (1999).

    CAS  PubMed  Google Scholar 

  108. Schaible, H. G., Hope, P. J., Lang, C. W. & Duggan, A. W. Calcitonin gene-related peptide causes intraspinal spreading of substance P released by peripheral stimulation. Eur. J. Neurosci. 4, 750–757 (1992).

    CAS  PubMed  Google Scholar 

  109. Miraucourt, L. S., Moisset, X. & Voisin, D. L. Glycine inhibitory dysfunction induces a selectively dynamic, morphine-resistant, and neurokinin 1 receptor- independent mechanical allodynia. J. Neurosci. 29, 2519–2527 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Neumann, S., Braz, J. M., Skinner, K., Llewellyn-Smith, I. J. & Basbaum, A. I. Innocuous, not noxious, input activates PKCγ interneurons of the spinal dorsal horn via myelinated afferent fibers. J. Neurosci. 28, 7936–7944 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Woolf, C. J., Shortland, P., Coggeshall, R. E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355, 75–78 (1992).

    CAS  PubMed  Google Scholar 

  112. Watkins, L. R. & Maier, S. F. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 82, 981–1011 (2002).

    CAS  PubMed  Google Scholar 

  113. De Koninck, Y. Altered chloride homeostasis in neurological disorders: a new target. Curr. Opin. Pharmacol. 7, 93–99 (2007).

    CAS  PubMed  Google Scholar 

  114. Coull, J. A. et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424, 938–942 (2003).

    CAS  PubMed  Google Scholar 

  115. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    CAS  PubMed  Google Scholar 

  116. Price, D. D., Bennett, G. J. & Rafii, A. Psychophysical observations on patients with neuropathic pain relieved by a sympathetic block. Pain 36, 273–288 (1989).

    CAS  PubMed  Google Scholar 

  117. Samuelsson, M., Leffler, A. S. & Hansson, P. Dynamic mechanical allodynia: on the relationship between temporo-spatial stimulus parameters and evoked pain in patients with peripheral neuropathy. Pain 115, 264–272 (2005).

    PubMed  Google Scholar 

  118. Torebjork, H. E., Lundberg, L. E. & LaMotte, R. H. Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J. Physiol. 448, 765–780 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Garcia-Larrea, L. & Mauguière, F. Electrophysiological assessment of nociception in normals and patients: the use of nociceptive spinal reflexes. Electroencephal. Clin. Neurophysiol. Suppl. 41, 102–118 (1990).

    CAS  Google Scholar 

  120. Le Bars, D., Dickenson, A. H. & Besson, J. M. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 6, 305–327 (1979).

    CAS  PubMed  Google Scholar 

  121. Tuveson, B., Leffler, A. S. & Hansson, P. Heterotopic noxious conditioning stimulation (HNCS) reduced the intensity of spontaneous pain, but not of allodynia in painful peripheral neuropathy. Eur. J. Pain 11, 452–462 (2007).

    PubMed  Google Scholar 

  122. Truini, A. et al. Peripheral nociceptor sensitization mediates allodynia in patients with distal symmetric polyneuropathy. J. Neurol. 260, 761–766 (2013).

    CAS  PubMed  Google Scholar 

  123. Mendell, J. R. & Sahenk, Z. Clinical practice. Painful sensory neuropathy. N. Engl. J. Med. 348, 1243–1255 (2003).

    PubMed  Google Scholar 

  124. Cole, J. et al. Unmyelinated tactile afferents underpin detection of low-force monofilaments. Muscle Nerve 34, 105–107 (2006).

    PubMed  Google Scholar 

  125. Koltzenburg, M. & Scadding, J. Neuropathic pain. Curr. Opin. Neurol. 14, 641–647 (2001).

    CAS  PubMed  Google Scholar 

  126. Ochoa, J. L., Campero, M., Serra, J. & Bostock, H. Hyperexcitable polymodal and insensitive nociceptors in painful human neuropathy. Muscle Nerve 32, 459–472 (2005).

    PubMed  Google Scholar 

  127. Lu, Y., Zheng, J., Xiong, L., Zimmermann, M. & Yang, J. Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat. J. Physiol. 586, 5701–5715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Nesic, O. et al. Transcriptional profiling of spinal cord injury-induced central neuropathic pain. J. Neurochem. 95, 998–1014 (2005).

    CAS  PubMed  Google Scholar 

  129. Yu, C. G. & Yezierski, R. P. Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res. Mol. Brain Res. 138, 244–255 (2005).

    CAS  PubMed  Google Scholar 

  130. Albe-Fessard, D. & Lombard, M. C. in Advances in Pain Research and Therapy (eds Bonica, J. J. et al.) 691–700 (Raven Press, 1983).

    Google Scholar 

  131. Banati, R. B. Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J. Physiol. Paris 96, 289–299 (2000).

    Google Scholar 

  132. Wasserman, J. K. & Koeberle, P. D. Development and characterization of a hemorrhagic rat model of central post-stroke pain. Neuroscience 161, 173–183 (2009).

    CAS  PubMed  Google Scholar 

  133. Kim, H. Y., Wang, J. & Gwak, Y. S. Gracile neurons contribute to the maintenance of neuropathic pain in peripheral and central neuropathic models. J. Neurotrauma 29, 2587–2592 (2012).

    PubMed  Google Scholar 

  134. Ralston, H. J. 3rd. Pain and the primate thalamus. Prog. Brain Res. 149, 1–10 (2005).

    PubMed  Google Scholar 

  135. Hirato, M. et al. Pathophysiology of central (thalamic) pain: combined change of sensory thalamus with cerebral cortex around central sulcus. Stereotact. Funct. Neurosurg. 62, 300–303 (1994).

    CAS  PubMed  Google Scholar 

  136. Rinaldi, P. C., Young, R. F., Albe-Fessard, D. & Chodakiewitz, J. Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain. J. Neurosurg. 74, 415–421 (1991).

    CAS  PubMed  Google Scholar 

  137. Cesaro, P. et al. Central pain and thalamic hyperactivity: a single photon emission computerized tomographic study. Pain 47, 329–336 (1991).

    CAS  Google Scholar 

  138. Peyron, R. et al. An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 63, 1838–1846 (2004).

    CAS  PubMed  Google Scholar 

  139. Masri, R. et al. Zona incerta: a role in central pain. J. Neurophysiol. 102, 181–191 (2009).

    PubMed  PubMed Central  Google Scholar 

  140. Cesaro, P. et al. Organization of the median and intralaminar nuclei of the thalamus: hypotheses on their role in the onset of certain central pain. Rev. Neurol. 142, 297–302 (1986).

    CAS  PubMed  Google Scholar 

  141. Schweinhardt, P. et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32, 256–265 (2006).

    PubMed  Google Scholar 

  142. Apkarian, A. V., Hodge, C. J. Primate spinothalamic pathways: I. A quantitative study of the cells of origin of the spinothalamic pathway. J. Comp. Neurol. 288, 447–473 (1989).

    CAS  PubMed  Google Scholar 

  143. Casey, K. L. et al. Psychophysical and cerebral responses to heat stimulation in patients with central pain, painless central sensory loss, and in healthy persons. Pain 153, 331–341 (2012).

    PubMed  Google Scholar 

  144. Baron, R., Tölle, T. R., Gockel, U., Brosz, M. & Freynhagen, R. A cross-sectional cohort survey in 2100 patients with painful diabetic neuropathy and postherpetic neuralgia: differences in demographic data and sensory symptoms. Pain 146, 34–40 (2009).

    PubMed  Google Scholar 

  145. Finnerup, N. B. & Jensen, T. S. Mechanisms of disease: mechanism-based classification of neuropathic pain—a critical analysis. Nat. Clin. Pract. Neurol. 2, 107–115 (2006).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, and made substantial contributions to discussion of the content, writing, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Giorgio Cruccu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truini, A., Garcia-Larrea, L. & Cruccu, G. Reappraising neuropathic pain in humans—how symptoms help disclose mechanisms. Nat Rev Neurol 9, 572–582 (2013). https://doi.org/10.1038/nrneurol.2013.180

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing