Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new prion disease: relationship with central and peripheral amyloidoses

Key Points

  • The misfolding of proteins and their subsequent deposition as amyloid in peripheral nerves lead to sensory and autonomic neuropathy

  • A new hereditary form of neuropathy, prion protein (PrP) systemic amyloidosis, is caused by truncation mutations of the prion protein gene PRNP

  • Some acquired prion diseases are known to have a peripheral phase in their pathogenesis, but were not previously thought to cause peripheral disease

  • The new prion disease is unlikely to pose any risk of iatrogenic transmission, but precautionary measures are recommended

  • Peripheral manifestations are increasingly recognized in common neurodegenerative diseases associated with protein misfolding

  • Regional variability in protein deposition and toxicity associated with protein-misfolding disorders is only partly explained by known factors, and is a key area for future research

Abstract

Prion diseases are typically recognized as rapidly progressive dementing illnesses that also feature myoclonus and cerebellar ataxia. Several families have now been described with a late-onset hereditary sensory and autonomic neuropathy caused by truncation of prion protein (PrP), and associated with systemic amyloidosis, which was a profoundly unexpected phenotype. The chronic symptoms of this disorder, termed PrP systemic amyloidosis, can be very disabling, and are comparable to familial amyloid polyneuropathy (FAP) caused by transthyretin mutations. Patients require symptomatic therapies directed towards control of nausea, diarrhoea, incontinence, neuropathic pain and postural hypotension. Although the potential transmissibility of this new prion disease is probably extremely low, we advocate PrP gene analysis before biopsy in the investigation of peripheral and autonomic neuropathies, or for patients with unexplained diarrhoea and neuropathy. Prion diseases and the FAPs both display prominent effects of mutation type on clinical presentation and patterns of pathology—a fascinating but unexplained observation. Several neurodegenerative diseases associated with central protein misfolding, such as Huntington and Parkinson diseases, also have under-recognized peripheral components. Most of the familial amyloidoses can be explained by known gene mutations, but amino acid variants in proteins involved in other central neurodegenerative diseases might direct the initial pathology to the periphery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue distribution of abnormal PrP in three prion diseases, with affected areas shown in colour.
Figure 2: Overlap in the phenotypes of prion diseases HSAN, FAP and CAA.
Figure 3: Suggested diagnostic flow chart for undiagnosed sensory and autonomic neuropathy.

Similar content being viewed by others

References

  1. Frangione, B. et al. Familial cerebral amyloid angiopathy related to stroke and dementia. Amyloid 8 (Suppl. 1), 36–42 (2001).

    CAS  PubMed  Google Scholar 

  2. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Revesz, T. et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol. 118, 115–130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Plante-Bordeneuve, V. & Said, G. Familial amyloid polyneuropathy. Lancet Neurol. 10, 1086–1097 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Prusiner, S. B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costa, P. P., Figueira, A. S. & Bravo, F. R. Amyloid fibril protein related to pre-albumin in familial amyloidotic polyneuropathy. Proc. Natl Acad. Sci. USA 75, 4499–4503 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Allen, M. W., Frohlich, H. A. & Davis, J. R. Inherited predisposition to generalized amyloidosis. Clinical and pathological study of a family with neuropathy nephropathy and peptic ulcer. Neurology 19, 10–25 (1969).

    Article  CAS  PubMed  Google Scholar 

  10. Levy, E. et al. Mutation in gelsolin gene in Finnish hereditary amyloidosis. J. Exp. Med. 172, 1865–1867 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Valleix, S. et al. Hereditary systemic amyloidosis due to Asp76Asn variant β2-microglobulin. N. Engl. J. Med. 366, 2276–2283 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Andrade, C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75, 408–427 (1952).

    Article  CAS  PubMed  Google Scholar 

  13. Meretoja, J. Familial systemic paramyloidosis with lattice dystrophy of the cornea, progressive cranial neuropathy, skin changes and various internal symptoms. A previously unrecognized heritable syndrome. Ann. Clin. Res. 1, 314–324 (1969).

    CAS  PubMed  Google Scholar 

  14. Mead, S. et al. A novel prion disease associated with diarrhea and autonomic neuropathy. N. Engl. J. Med. 369, 1904–1914 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Fraser, H. & Dickinson, A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462–463 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. Aguzzi, A., Nuvolone, M. & Zhu, C. The immunobiology of prion diseases. Nat. Rev. Immunol. 13, 888–902 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Miller, M. W. & Williams, E. S. Prion disease: horizontal prion transmission in mule deer. Nature 425, 35–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Seidel, B. et al. Scrapie agent (strain 263K) can transmit disease via the oral route after persistence in soil over years. PLoS ONE 2, e435 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brown, P. et al. Iatrogenic Creutzfeldt–Jakob disease at the millennium. Neurology 55, 1075–1081 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Collinge, J. Variant Creutzfeldt–Jakob disease. Lancet 354, 317–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Whitfield, J. T., Pako, W. H., Collinge, J. & Alpers, M. P. Mortuary rites of the South Fore and kuru. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3721–3724 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Collinge, J. et al. Kuru in the 21st century—an acquired human prion disease with very long incubation periods. Lancet 367, 2068–2074 (2006).

    Article  PubMed  Google Scholar 

  23. Glatzel, M., Abela, E., Maissen, M. & Aguzzi, A. Extraneural pathologic prion protein in sporadic Creutzfeldt–Jakob disease. N. Engl. J. Med. 349, 1812–1820 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kitamoto, T., Muramoto, T., Mohri, S., Doh-ura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol. 65, 6292–6295 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Castro-Seoane, R. et al. Plasmacytoid dendritic cells sequester high prion titres at early stages of prion infection. PLoS Pathog. 8, e1002538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kimberlin, R. H. & Walker, C. A. The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res. 12, 201–211 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Hill, A. F. et al. Investigation of variant Creutzfeldt–Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353, 183–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Gill, O. N. et al. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ 347, f5675 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peden, A. et al. Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. Haemophilia 16, 296–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Peden, A. H., Head, M. W., Ritchie, D. L., Bell, J. E. & Ironside, J. W. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364, 527–529 (2004).

    Article  PubMed  Google Scholar 

  31. Llewelyn, C. A. et al. Possible transmission of variant Creutzfeldt–Jakob disease by blood transfusion. Lancet 363, 417–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Wroe, S. J. et al. Clinical presentation and pre-mortem diagnosis of variant Creutzfeldt–Jakob disease associated with blood transfusion: a case report. Lancet 368, 2061–2067 (2006).

    Article  PubMed  Google Scholar 

  33. Mead, S. Prion disease genetics. Eur. J. Hum. Genet. 14, 273–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Kitamoto, T., Iizuka, R. & Tateishi, J. An amber mutation of prion protein in Gerstmann–Straussler syndrome with mutant PrP plaques. Biochem. Biophys. Res. Commun. 192, 525–531 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Ghetti, B. et al. Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc. Natl Acad. Sci. USA 93, 744–748 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jayadev, S. et al. Familial prion disease with Alzheimer disease-like tau pathology and clinical phenotype. Ann. Neurol. 69, 712–720 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jansen, C. et al. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP. Acta Neuropathol. 119, 189–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Finckh, U. et al. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am. J. Hum. Genet. 66, 110–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Matsuzono, K. et al. A novel familial prion disease causing pan-autonomic-sensory neuropathy and cognitive impairment. Eur. J. Neurol. 20, e67–e69 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Themistocleous, A. C. et al. Late onset hereditary sensory and autonomic neuropathy with cognitive impairment associated with Y163X prion mutation. J. Neurol. 261, 2230–2233 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Capellari, S. et al. Prion disease associated with diarrhea and autonomic neuropathy: phenotypic and genetic characterization of an Italian family. Prion 8 (Suppl. 1), 127 (2014).

    Google Scholar 

  42. Montagna, P., Gambetti, P., Cortelli, P. & Lugaresi, E. Familial and sporadic fatal insomnia. Lancet Neurol. 2, 167–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Medori, R. et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N. Engl. J. Med. 326, 444–449 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cortelli, P. et al. Cardiovascular dysautonomia in fatal familial insomnia. Clin. Auton. Res. 1, 15–21 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Portaluppi, F. et al. Diurnal blood pressure variation and hormonal correlates in fatal familial insomnia. Hypertension 23, 569–576 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Auer-Grumbach, M. Hereditary sensory and autonomic neuropathies. Handb. Clin. Neurol. 115, 893–906 (2013).

    Article  PubMed  Google Scholar 

  47. Klein, C. J. et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43, 595–600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adams, D., Lozeron, P. & Lacroix, C. Amyloid neuropathies. Curr. Opin. Neurol. 25, 564–572 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Cappellari, M. et al. Variable presentations of TTR-related familial amyloid polyneuropathy in seventeen patients. J. Peripher. Nerv. Sys. 16, 119–129 (2011).

    Article  Google Scholar 

  50. Vidal, R. et al. A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399, 776–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Beck, J. et al. Validation of next-generation sequencing technologies in genetic diagnosis of dementia. Neurobiol. Aging 35, 261–265 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Guerreiro, R., Bras, J., Hardy, J. & Singleton, A. Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum. Mol. Genet. 23, R47–R53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gibbs, C. J. Jr et al. Transmission of Creutzfeldt–Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. J. Neurol. Neurosurg. Psychiatry 57, 757–758 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  55. van der Burg, J. M. et al. Gastrointestinal dysfunction contributes to weight loss in Huntington's disease mice. Neurobiol. Dis. 44, 1–8 (2011).

    Article  PubMed  Google Scholar 

  56. van der Burg, J. M., Bjorkqvist, M. & Brundin, P. Beyond the brain: widespread pathology in Huntington's disease. Lancet Neurol. 8, 765–774 (2009).

    Article  PubMed  Google Scholar 

  57. Sassone, J., Colciago, C., Cislaghi, G., Silani, V. & Ciammola, A. Huntington's disease: the current state of research with peripheral tissues. Exp. Neurol. 219, 385–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Hilton, D. et al. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson's disease. Acta Neuropathol. 127, 235–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Olanow, C. W., Wakeman, D. R. & Kordower, J. H. Peripheral alpha-synuclein and Parkinson's disease. Mov. Disord. 29, 963–966 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Beach, T. G. et al. Submandibular gland biopsy for the diagnosis of Parkinson disease. J. Neuropathol. Exp. Neurol. 72, 130–136 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Collinge, J. Prion strain mutation and selection. Science 328, 1111–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission an infectious conformation compatible withtwo highly divergent yeast prion proteins. Cell 121, 49–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Jacobson, D. R. et al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N. Engl. J. Med. 336, 466–473 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Raimondi, S. et al. Effects of the known pathogenic mutations on the aggregation pathway of the amyloidogenic peptide of apolipoprotein A-I. J. Mol. Biol. 407, 465–476 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Wadsworth, J. D. et al. Tissue distribution of protease resistant prion protein in variant Creutzfeldt–Jakob disease using a highly sensitive immunoblotting assay. Lancet 358, 171–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Minikel, E. et al. Prion protein genetic variation in 50,000 humans. Prion 8 (Suppl. 1), 115 (2014).

    Google Scholar 

  68. Exome Aggregation Consortium. ExAC Browser (Beta) [online], (2014).

Download references

Acknowledgements

S.M. is funded by core support for the UK Medical Research Council (MRC) Prion Unit. M.M.R. is grateful to the MRC for an MRC Centre Grant (G0601943), and the US National Institutes of Neurological Diseases and Stroke and the Office of Rare Diseases (U54NS065712) for their support. This work was undertaken at University College London Hospitals and University College London, which received a proportion of funding from the UK Department of Health's National Institute for Health Research Biomedical Research Centres funding scheme.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching data for the article, discussion of content, writing the article, and review and editing of the manuscript before submission.

Corresponding author

Correspondence to Simon Mead.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mead, S., Reilly, M. A new prion disease: relationship with central and peripheral amyloidoses. Nat Rev Neurol 11, 90–97 (2015). https://doi.org/10.1038/nrneurol.2014.263

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing