Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction

Key Points

  • Congenital myopathies are clinically and genetically heterogeneous conditions characterized by muscle weakness and distinctive structural abnormalities in muscle biopsy samples

  • Clinically, congenital myopathies have a stable or slowly progressive course, and the severity varies depending on the causative mutation

  • More than 20 genes have been implicated in congenital myopathies

  • The most commonly affected genes encode proteins involved in skeletal muscle Ca2+ homeostasis, excitation–contraction coupling and thin–thick filament assembly and interactions

  • Management of congenital myopathies is largely supportive, although experimental therapeutic approaches are reaching the clinical trial stage

Abstract

The congenital myopathies are a group of early-onset, non-dystrophic neuromuscular conditions with characteristic muscle biopsy findings, variable severity and a stable or slowly progressive course. Pronounced weakness in axial and proximal muscle groups is a common feature, and involvement of extraocular, cardiorespiratory and/or distal muscles can implicate specific genetic defects. Central core disease (CCD), multi-minicore disease (MmD), centronuclear myopathy (CNM) and nemaline myopathy were among the first congenital myopathies to be reported, and they still represent the main diagnostic categories. However, these entities seem to belong to a much wider phenotypic spectrum. To date, congenital myopathies have been attributed to mutations in over 20 genes, which encode proteins implicated in skeletal muscle Ca2+ homeostasis, excitation–contraction coupling, thin–thick filament assembly and interactions, and other mechanisms. RYR1 mutations are the most frequent genetic cause, and CCD and MmD are the most common subgroups. Next-generation sequencing has vastly improved mutation detection and has enabled the identification of novel genetic backgrounds. At present, management of congenital myopathies is largely supportive, although new therapeutic approaches are reaching the clinical trial stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscle pathology in congenital myopathies.
Figure 2: Proteins involved in congenital myopathies.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Magee, K. R. & Shy, G. M. A new congenital non-progressive myopathy. Brain 79, 610–621 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Engel, A. G., Gomez, M. R. & Groover, R. V. Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin. Proc. 46, 666–681 (1971).

    CAS  PubMed  Google Scholar 

  3. Spiro, A. J., Shy, G. M. & Gonatas, N. K. Myotubular myopathy. Persistence of fetal muscle in an adolescent boy. Arch. Neurol. 14, 1–14 (1966).

    Article  CAS  PubMed  Google Scholar 

  4. Shy, G. M., Engel, W. K., Somers, J. E. & Wanko, T. Nemaline myopathy. a new congenital myopathy. Brain 86, 793–810 (1963).

    Article  CAS  PubMed  Google Scholar 

  5. Lopez, R. J. et al. An RYR1 mutation associated with malignant hyperthermia is also associated with bleeding abnormalities. Sci. Signal. 9, ra68 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Jungbluth, H. Myopathology in times of modern imaging. Neuropathol. Appl. Neurobiol. 43, 24–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Snoeck, M. et al. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur. J. Neurol. 22, 1094–1112 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Jungbluth, H. & Voermans, N. C. Congenital myopathies: not only a paediatric topic. Curr. Opin. Neurol. 29, 642–650 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Quane, K. A. et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat. Genet. 5, 51–55 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Fujii, J. et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Biancalana, V. & Laporte, J. Diagnostic use of massively parallel sequencing in neuromuscular diseases: towards an integrated diagnosis. J. Neuromuscul. Dis. 2, 193–203 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Jungbluth, H., Sewry, C. A. & Muntoni, F. Core myopathies. Semin. Pediatr. Neurol. 18, 239–249 (2011).

    Article  PubMed  Google Scholar 

  13. Dubowitz, V., Sewry, C. A. & Oldfors, A. Muscle Biopsy: a Practical Approach 4th edn (Saunders, 2013).

    Google Scholar 

  14. Amburgey, K. et al. Prevalence of congenital myopathies in a representative pediatric United States population. Ann. Neurol. 70, 662–665 (2011).

    Article  PubMed  Google Scholar 

  15. Hackman, P., Udd, B., Bonnemann, C. G., Ferreiro, A. & Titinopathy Database Consortium. 219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April-1 May 2016. Neuromuscul. Disord. 27, 396–407 (2017).

    Article  PubMed  Google Scholar 

  16. Jungbluth, H. et al. Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. Neurology 59, 284–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Jungbluth, H. et al. Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology 65, 1930–1935 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Klein, A. et al. Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Hum. Mutat. 33, 981–988 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Ferreiro, A. et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am. J. Hum. Genet. 71, 739–749 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  20. Cullup, T. et al. Mutations in MYH7 cause multi-minicore disease (MmD) with variable cardiac involvement. Neuromuscul. Disord. 22, 1096–1104 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Takayama, K. et al. Japanese multiple epidermal growth factor 10 (MEGF10) myopathy with novel mutations: a phenotype–genotype correlation. Neuromuscul. Disord. 26, 604–609 (2016).

    Article  PubMed  Google Scholar 

  22. Liewluck, T. et al. Adult-onset respiratory insufficiency, scoliosis, and distal joint hyperlaxity in patients with multiminicore disease due to novel Megf10 mutations. Muscle Nerve 53, 984–988 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Logan, C. V. et al. Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD). Nat. Genet. 43, 1189–1192 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Boyden, S. E. et al. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics 13, 115–124 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chauveau, C. et al. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum. Mol. Genet. 23, 980–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Romero, N. B. et al. Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. Brain 126, 2341–2349 (2003).

    Article  PubMed  Google Scholar 

  27. Scoto, M. et al. SEPN1-related myopathies: clinical course in a large cohort of patients. Neurology 76, 2073–2078 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Klein, A. et al. Muscle MRI in congenital myopathies due to ryanodine receptor type 1 gene mutations. Arch. Neurol. 68, 1171–1179 (2011).

    Article  PubMed  Google Scholar 

  29. Jungbluth, H. et al. Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations. Neuromuscul. Disord. 14, 785–790 (2004).

    Article  PubMed  Google Scholar 

  30. Rosenberg, H., Davis, M., James, D., Pollock, N. & Stowell, K. Malignant hyperthermia. Orphanet J. Rare Dis. 2, 21 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Zhou, H. et al. Characterization of recessive RYR1 mutations in core myopathies. Hum. Mol. Genet. 15, 2791–2803 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kraeva, N. et al. Compound RYR1 heterozygosity resulting in a complex phenotype of malignant hyperthermia susceptibility and a core myopathy. Neuromuscul. Disord. 25, 567–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Dowling, J. J. et al. King–Denborough syndrome with and without mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul. Disord. 21, 420–427 (2011).

    Article  PubMed  Google Scholar 

  34. Horstick, E. J. et al. Stac3 is a component of the excitation–contraction coupling machinery and mutated in Native American myopathy. Nat. Commun. 4, 1952 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Dlamini, N. et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul. Disord. 23, 540–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Bethlem, J., van Gool, J., Hulsmann, W. C. & Meijer, A. E. Familial non-progressive myopathy with muscle cramps after exercise. A new disease associated with cores in the muscle fibres. Brain 89, 569–588 (1966).

    Article  CAS  PubMed  Google Scholar 

  37. Løseth, S. et al. A novel late-onset axial myopathy associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene. J. Neurol. 260, 1504–1510 (2013).

    Article  PubMed  CAS  Google Scholar 

  38. Jungbluth, H. et al. Late-onset axial myopathy with cores due to a novel heterozygous dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul. Disord. 19, 344–347 (2009).

    Article  PubMed  Google Scholar 

  39. Jungbluth, H., Wallgren-Pettersson, C. & Laporte, J. Centronuclear (myotubular) myopathy. Orphanet J. Rare Dis. 3, 26 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  40. Laporte, J. et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13, 175–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Bitoun, M. et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat. Genet. 37, 1207–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Böhm, J. et al. Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain 137, 3160–3170 (2014).

    Article  PubMed  Google Scholar 

  43. Wilmshurst, J. M. et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann. Neurol. 68, 717–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Nicot, A. S. et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat. Genet. 39, 1134–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Ceyhan-Birsoy, O. et al. Recessive truncating titin gene. TTN, mutations presenting as centronuclear myopathy. Neurology 81, 1205–1214 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Agrawal, P. B. et al. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am. J. Hum. Genet. 95, 218–226 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Majczenko, K. et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am. J. Hum. Genet. 91, 365–371 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Tosch, V. et al. A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. Hum. Mol. Genet. 15, 3098–3106 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Bevilacqua, J. A. et al. “Necklace” fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol. 117, 283–291 (2009).

    Article  PubMed  Google Scholar 

  50. Liewluck, T., Lovell, T. L., Bite, A. V. & Engel, A. G. Sporadic centronuclear myopathy with muscle pseudohypertrophy, neutropenia, and necklace fibers due to a DNM2 mutation. Neuromuscul. Disord. 20, 801–804 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  51. Toussaint, A. et al. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol. 121, 253–266 (2011).

    Article  PubMed  Google Scholar 

  52. Romero, N. B. Centronuclear myopathies: a widening concept. Neuromuscul. Disord. 20, 223–228 (2010).

    Article  PubMed  Google Scholar 

  53. Herman, G. E., Finegold, M., Zhao, W., de Gouyon, B. & Metzenberg, A. Medical complications in long-term survivors with X-linked myotubular myopathy. J. Pediatr. 134, 206–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Bohm, J. et al. Mutation spectrum in the large GTPase dynamin 2, and genotype–phenotype correlation in autosomal dominant centronuclear myopathy. Hum. Mutat. 33, 949–959 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Bitoun, M. et al. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann. Neurol. 62, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Jungbluth, H. et al. Centronuclear myopathy with cataracts due to a novel dynamin 2 (DNM2) mutation. Neuromuscul. Disord. 20, 49–52 (2010).

    Article  PubMed  Google Scholar 

  57. Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot–Marie–Tooth disease. Nat. Genet. 37, 289–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Jungbluth, H., Wallgren-Pettersson, C. & Laporte, J. F. 198th ENMC International Workshop: 7th Workshop on Centronuclear (Myotubular) Myopathies, 31st May–2nd June 2013, Naarden, The Netherlands. Neuromuscul. Disord. 23, 1033–1043 (2013).

    Article  PubMed  Google Scholar 

  59. Pelin, K. et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc. Natl Acad. Sci. USA 96, 2305–2310 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pelin, K. et al. Nebulin mutations in autosomal recessive nemaline myopathy: an update. Neuromuscul. Disord. 12, 680–686 (2002).

    Article  PubMed  Google Scholar 

  61. Nowak, K. J. et al. Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet. 23, 208–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Laing, N. G. et al. A mutation in the α tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat. Genet. 9, 75–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Donner, K. et al. Mutations in the β-tropomyosin (TPM2) gene — a rare cause of nemaline myopathy. Neuromuscul. Disord. 12, 151–158 (2002).

    Article  PubMed  Google Scholar 

  64. Sambuughin, N. et al. Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. Am. J. Hum. Genet. 87, 842–847 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Laing, N. G. et al. Mutations and polymorphisms of the skeletal muscle α-actin gene (ACTA1). Hum. Mutat. 30, 1267–1277 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Lehtokari, V. L. et al. Identification of a founder mutation in TPM3 in nemaline myopathy patients of Turkish origin. Eur. J. Hum. Genet. 16, 1055–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Monnier, N. et al. Absence of β-tropomyosin is a new cause of Escobar syndrome associated with nemaline myopathy. Neuromuscul. Disord. 19, 118–123 (2009).

    Article  PubMed  Google Scholar 

  68. Johnston, J. J. et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am. J. Hum. Genet. 67, 814–821 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Agrawal, P. B. et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am. J. Hum. Genet. 80, 162–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Ravenscroft, G. et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am. J. Hum. Genet. 93, 6–18 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Gupta, V. A. et al. Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am. J. Hum. Genet. 93, 1108–1117 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Yuen, M. et al. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J. Clin. Invest. 124, 4693–4708 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Lornage, X. et al. Recessive MYPN mutations cause cap myopathy with occasional nemaline rods. Ann. Neurol. 81, 467–473 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Miyatake, S. et al. Biallelic mutations in MYPN, encoding myopalladin, are associated with childhood-onset, slowly progressive nemaline myopathy. Am. J. Hum. Genet. 100, 169–178 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Malfatti, E. et al. A premature stop codon in MYO18B is associated with severe nemaline myopathy with cardiomyopathy. J. Neuromuscul. Dis. 2, 219–227 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  76. Domazetovska, A. et al. Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann. Neurol. 62, 597–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Ryan, M. M. et al. Nemaline myopathy: a clinical study of 143 cases. Ann. Neurol. 50, 312–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Feng, J. J. & Marston, S. Genotype–phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul. Disord. 19, 6–16 (2009).

    Article  PubMed  Google Scholar 

  79. Witting, N., Werlauff, U., Duno, M. & Vissing, J. Prevalence and phenotypes of congenital myopathy due to α-actin 1 gene mutations. Muscle Nerve 53, 388–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Jungbluth, H. et al. Mild phenotype of nemaline myopathy with sleep hypoventilation due to a mutation in the skeletal muscle α-actin (ACTA1) gene. Neuromuscul. Disord. 11, 35–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Sambuughin, N. et al. KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochem. Biophys. Res. Commun. 421, 743–749 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Davidson, A. E. et al. Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. Brain 136, 508–521 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  83. Jungbluth, H. et al. Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscul. Disord. 14, 779–784 (2004).

    Article  PubMed  Google Scholar 

  84. Sato, I. et al. Congenital neuromuscular disease with uniform type 1 fiber and RYR1 mutation. Neurology 70, 114–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Muhammad, E. et al. Congenital myopathy is caused by mutation of HACD1. Hum. Mol. Genet. 22, 5229–5236 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Maurer, M. et al. Centronuclear myopathy in Labrador retrievers: a recent founder mutation in the PTPLA gene has rapidly disseminated worldwide. PLoS ONE 7, e46408 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Walmsley, G. L. et al. Progressive structural defects in canine centronuclear myopathy indicate a role for HACD1 in maintaining skeletal muscle membrane systems. Am. J. Pathol. 187, 441–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Clarke, N. F. et al. Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann. Neurol. 63, 329–337 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Munot, P. et al. Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul. Disord. 20, 796–800 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Clarke, N. F. et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum. Mutat. 31, E1544–E1550 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Laing, N. G. et al. Actin mutations are one cause of congenital fibre type disproportion. Ann. Neurol. 56, 689–694 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Clarke, N. F. et al. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann. Neurol. 59, 546–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Lamont, P. J. et al. Novel mutations widen the phenotypic spectrum of slow skeletal/β-cardiac myosin (MYH7) distal myopathy. Hum. Mutat. 35, 868–879 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Vallat, J. M. et al. Coexistence of minicores, cores, and rods in the same muscle biopsy. A new example of mixed congenital myopathy. Acta Neuropathol. 58, 229–232 (1982).

    Article  CAS  PubMed  Google Scholar 

  95. Schartner, V. et al. Dihydropyridine receptor (DHPR. CACNA1S) congenital myopathy. Acta Neuropathol. 133, 517–533 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Monnier, N. et al. Presence of two different genetic traits in malignant hyperthermia families: implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility. Anesthesiology 97, 1067–1074 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Jurkat-Rott, K. et al. A calcium channel mutation causing hypokalemic periodic paralysis. Hum. Mol. Genet. 3, 1415–1419 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. O'Grady, G. L. et al. Variants in the oxidoreductase PYROXD1 cause early-onset myopathy with internalized nuclei and myofibrillar disorganization. Am. J. Hum. Genet. 99, 1086–1105 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Tajsharghi, H. & Oldfors, A. Myosinopathies: pathology and mechanisms. Acta Neuropathol. 125, 3–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Tajsharghi, H. et al. Human disease caused by loss of fast IIa myosin heavy chain due to recessive MYH2 mutations. Brain 133, 1451–1459 (2010).

    Article  PubMed  Google Scholar 

  101. Martinsson, T. et al. Autosomal dominant myopathy: missense mutation (Glu-706 → Lys) in the myosin heavy chain IIa gene. Proc. Natl Acad. Sci. USA 97, 14614–14619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Willis, T. et al. A novel MYH2 mutation in family members presenting with congenital myopathy, ophthalmoplegia and facial weakness. J. Neurol. 263, 1427–1433 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Tsabari, R., Daum, H., Kerem, E., Fellig, Y. & Dor, T. Congenital myopathy due to myosin heavy chain 2 mutation presenting as chronic aspiration pneumonia in infancy. Neuromuscul. Disord. 27, 947–950 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. McMillin, M. J. et al. Mutations in ECEL1 cause distal arthrogryposis type 5D. Am. J. Hum. Genet. 92, 150–156 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Dieterich, K. et al. The neuronal endopeptidase ECEL1 is associated with a distinct form of recessive distal arthrogryposis. Hum. Mol. Genet. 22, 1483–1492 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Shaaban, S. et al. Expanding the phenotypic spectrum of ECEL1-related congenital contracture syndromes. Clin. Genet. 85, 562–567 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Todd, E. J. et al. Next generation sequencing in a large cohort of patients presenting with neuromuscular disease before or at birth. Orphanet J. Rare Dis. 10, 148 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  108. Bayram, Y. et al. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J. Clin. Invest. 126, 762–778 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  109. Coste, B. et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal arthrogryposis. Proc. Natl Acad. Sci. USA 110, 4667–4672 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Zaharieva, I. T. et al. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy. Brain 139, 674–691 (2016).

    Article  PubMed  Google Scholar 

  111. Singh, R. R. et al. Mutations in SCN4A: a rare but treatable cause of recurrent life-threatening laryngospasm. Pediatrics 134, e1447–e1450 (2014).

    Article  PubMed  Google Scholar 

  112. Bharucha-Goebel, D. X. et al. Severe congenital RYR1-associated myopathy: the expanding clinicopathologic and genetic spectrum. Neurology 80, 1584–1589 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Schessl, J. et al. MRI in DNM2-related centronuclear myopathy: evidence for highly selective muscle involvement. Neuromuscul. Disord. 17, 28–32 (2007).

    Article  PubMed  Google Scholar 

  114. Clarke, N. F. et al. Cap disease due to mutation of the beta-tropomyosin gene (TPM2). Neuromuscul. Disord. 19, 348–351 (2009).

    Article  PubMed  Google Scholar 

  115. Lehtokari, V. L. et al. Cap disease caused by heterozygous deletion of the β-tropomyosin gene TPM2. Neuromuscul. Disord. 17, 433–442 (2007).

    Article  PubMed  Google Scholar 

  116. Sewry, C. A., Holton, J. L., Dick, D. J., Muntoni, F. & Hanna, M. G. Zebra body myopathy is caused by a mutation in the skeletal muscle actin gene (ACTA1). Neuromuscul. Disord. 25, 388–391 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Lacruz, R. S. & Feske, S. Diseases caused by mutations in ORAI1 and STIM1. Ann. NY Acad. Sci. 1356, 45–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Gordon, C. P. & Litz, S. Multicore myopathy in a patient with anhidrotic ectodermal dysplasia. Can. J. Anaesth. 39, 966–968 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Engel, A. G., Redhage, K. R., Tester, D. J., Ackerman, M. J. & Selcen, D. Congenital myopathy associated with the triadin knockout syndrome. Neurology 88, 1153–1156 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Altmann, H. M. et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the triadin knockout syndrome. Circulation 131, 2051–2060 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Olive, M. et al. New cardiac and skeletal protein aggregate myopathy associated with combined MuRF1 and MuRF3 mutations. Hum. Mol. Genet. 24, 6264 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y. M. & Jones, L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389–23397 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Park, H. et al. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J. Biol. Chem. 279, 18026–18033 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Costello, B. et al. Characterization of the junctional face membrane from terminal cisternae of sarcoplasmic reticulum. J. Cell Biol. 103, 741–753 (1986).

    Article  CAS  PubMed  Google Scholar 

  125. Treves, S. et al. Minor sarcoplasmic reticulum membrane components that modulate excitation–contraction coupling in striated muscles. J. Physiol. 587, 3071–3079 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Rios, E. & Gyorke, S. Calsequestrin, triadin and more: the molecules that modulate calcium release in cardiac and skeletal muscle. J. Physiol. 587, 3069–3070 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Guo, W. & Campbell, K. P. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J. Biol. Chem. 270, 9027–9030 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Wium, E., Dulhunty, A. F. & Beard, N. A. Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors. Pflugers Arch. 468, 1985–1994 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Caswell, A. H., Motoike, H. K., Fan, H. & Brandt, N. R. Location of ryanodine receptor binding site on skeletal muscle triadin. Biochemistry 38, 90–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Groh, S. et al. Functional interaction of the cytoplasmic domain of triadin with the skeletal ryanodine receptor. J. Biol. Chem. 274, 12278–12283 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Goonasekera, S. A. et al. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. J. Gen. Physiol. 130, 365–378 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Gordon, A. M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Abu-Abed, M., Mal, T. K., Kainosho, M., MacLennan, D. H. & Ikura, M. Characterization of the ATP-binding domain of the sarco(endo)plasmic reticulum Ca2+-ATPase: probing nucleotide binding by multidimensional NMR. Biochemistry 41, 1156–1164 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. MacLennan, D. H., Asahi, M. & Tupling, A. R. The regulation of SERCA-type pumps by phospholamban and sarcolipin. Ann. NY Acad. Sci. 986, 472–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. MacLennan, D. H. & Kranias, E. G. Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell. Biol. 4, 566–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Asahi, M. et al. Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc. Natl Acad. Sci. USA 100, 5040–5045 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kurebayashi, N. & Ogawa, Y. Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J. Physiol. 533, 185–199 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Cherednichenko, G. et al. Conformational activation of Ca2+ entry by depolarization of skeletal myotubes. Proc. Natl Acad. Sci. USA 101, 15793–15798 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Launikonis, B. S. & Rios, E. Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J. Physiol. 583, 81–97 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Stiber, J. et al. STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat. Cell Biol. 10, 688–697 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat. Cell Biol. 8, 771–773 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Treves, S., Jungbluth, H., Muntoni, F. & Zorzato, F. Congenital muscle disorders with cores: the ryanodine receptor calcium channel paradigm. Curr. Opin. Pharmacol. 8, 319–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Hwang, J. H., Zorzato, F., Clarke, N. F. & Treves, S. Mapping domains and mutations on the skeletal muscle ryanodine receptor channel. Trends Mol. Med. 18, 644–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Maclennan, D. H. & Zvaritch, E. Mechanistic models for muscle diseases and disorders originating in the sarcoplasmic reticulum. Biochim. Biophys. Acta 1813, 948–964 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Hirata, H. et al. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 134, 2771–2781 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Zhou, H. et al. RyR1 deficiency in congenital myopathies disrupts excitation–contraction coupling. Hum. Mutat. 34, 986–996 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Zhou, H. et al. Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. Am. J. Hum. Genet. 79, 859–868 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Ducreux, S. et al. Functional properties of ryanodine receptors carrying three amino acid substitutions identified in patients affected by multi-minicore disease and central core disease, expressed in immortalized lymphocytes. Biochem. J. 395, 259–266 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Nelson, B. R. et al. Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc. Natl Acad. Sci. USA 110, 11881–11886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Polster, A., Nelson, B. R., Olson, E. N. & Beam, K. G. Stac3 has a direct role in skeletal muscle-type excitation–contraction coupling that is disrupted by a myopathy-causing mutation. Proc. Natl Acad. Sci. USA 113, 10986–10991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bohm, J. et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am. J. Hum. Genet. 92, 271–278 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Volkers, M. et al. Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. J. Cell Sci. 125, 287–294 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Jurynec, M. J. et al. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc. Natl Acad. Sci. USA 105, 12485–12490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Arbogast, S. et al. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann. Neurol. 65, 677–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Jungbluth, H. & Gautel, M. Pathogenic mechanisms in centronuclear myopathies. Front. Aging Neurosci. 6, 339 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  156. Cowling, B. S., Toussaint, A., Muller, J. & Laporte, J. Defective membrane remodeling in neuromuscular diseases: insights from animal models. PLoS Genet. 8, e1002595 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Bachmann, C. et al. Cellular, biochemical and molecular changes in muscles from patients with X-linked myotubular myopathy due to MTM1 mutations. Hum. Mol. Genet. 26, 320–332 (2017).

    CAS  PubMed  Google Scholar 

  158. Wallgren-Pettersson, C., Sewry, C. A., Nowak, K. J. & Laing, N. G. Nemaline myopathies. Sem. Pediatr. Neurol. 18, 230–238 (2011).

    Article  Google Scholar 

  159. Ravenscroft, G. et al. Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. Brain 134, 1101–1115 (2011).

    Article  PubMed  Google Scholar 

  160. Ravenscroft, G. et al. Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression. PLoS ONE 6, e28699 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Jain, R. K. et al. Nemaline myopathy with stiffness and hypertonia associated with an ACTA1 mutation. Neurology 78, 1100–1103 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Donkervoort, S. et al. TPM3 deletions cause a hypercontractile congenital muscle stiffness phenotype. Ann. Neurol. 78, 982–994 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Ochala, J. et al. Disrupted myosin cross-bridge cycling kinetics triggers muscle weakness in nebulin-related myopathy. FASEB J. 25, 1903–1913 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Marttila, M. et al. Nebulin interactions with actin and tropomyosin are altered by disease-causing mutations. Skelet. Muscle 4, 15 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  165. de Winter, J. M. et al. Mutation-specific effects on thin filament length in thin filament myopathy. Ann. Neurol. 9, 959–969 (2016).

    Article  CAS  Google Scholar 

  166. Ajima, R. et al. Deficiency of Myo18B in mice results in embryonic lethality with cardiac myofibrillar aberrations. Genes Cells 13, 987–999 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Gurung, R. et al. A zebrafish model for a human myopathy associated with mutation of the unconventional myosin MYO18B. Genetics 205, 725–735 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Gupta, V. A. & Beggs, A. H. Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet. Muscle 4, 11 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  169. Garg, A. et al. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J. Clin. Invest. 124, 3529–3539 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Castets, P. et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum. Mol. Genet. 20, 694–704 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Castets, P. et al. Selenoprotein N is dynamically expressed during mouse development and detected early in muscle precursors. BMC Dev. Biol. 9, 46 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  172. Beggs, A. H. et al. MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Proc. Natl Acad. Sci. USA 107, 14697–14702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dowling, J. J., Low, S. E., Busta, A. S. & Feldman, E. L. Zebrafish MTMR14 is required for excitation–contraction coupling, developmental motor function and the regulation of autophagy. Hum. Mol. Genet. 19, 2668–2681 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Fetalvero, K. M. et al. Defective autophagy and mTORC1 signaling in myotubularin null mice. Mol. Cell. Biol. 33, 98–110 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Al-Qusairi, L. et al. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin–proteasome pathways. FASEB J. 27, 3384–3394 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Durieux, A. C. et al. A centronuclear myopathy–dynamin 2 mutation impairs autophagy in mice. Traffic 13, 869–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Sarparanta, J. et al. Interactions with M-band titin and calpain 3 link myospryn (CMYA5) to tibial and limb-girdle muscular dystrophies. J. Biol. Chem. 285, 30304–30315 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. McClelland, V. et al. Vici syndrome associated with sensorineural hearing loss and evidence of neuromuscular involvement on muscle biopsy. Am. J. Med. Genet. A 152A, 741–747 (2010).

    Article  PubMed  Google Scholar 

  179. Byrne, S. et al. EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy. Brain 139, 765–781 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  180. Rokach, O. et al. Epigenetic changes as a common trigger of muscle weakness in congenital myopathies. Hum. Mol. Genet. 24, 4636–4647 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. North, K. N. et al. Approach to the diagnosis of congenital myopathies. Neuromuscul. Disord. 24, 97–116 (2014).

    Article  PubMed  Google Scholar 

  182. Hacohen, Y. et al. Fetal acetylcholine receptor inactivation syndrome: a myopathy due to maternal antibodies. Neurol. Neuroimmunol. Neuroinflamm. 2, e57 (2015).

    Article  PubMed  Google Scholar 

  183. Kinali, M. et al. Congenital myasthenic syndromes in childhood: diagnostic and management challenges. J. Neuroimmunol. 201–202, 6–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Bonnemann, C. G. et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul. Disord. 24, 289–311 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  185. Selcen, D. Myofibrillar myopathies. Neuromuscul. Disord. 21, 161–171 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  186. Nishino, I. Autophagic vacuolar myopathy. Semin. Pediatr. Neurol. 13, 90–95 (2006).

    Article  PubMed  Google Scholar 

  187. Wang, C. H. et al. Consensus statement on standard of care for congenital myopathies. J. Child Neurol. 27, 363–382 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  188. Jungbluth, H., Ochala, J., Treves, S. & Gautel, M. Current and future therapeutic approaches to the congenital myopathies. Semin. Cell Dev. Biol. 64, 191–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Childers, M. K. et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci. Transl Med. 6, 220ra10 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  190. Rendu, J. et al. Exon skipping as a therapeutic strategy applied to an RYR1 mutation with pseudo-exon inclusion causing a severe core myopathy. Hum. Gene Ther. 24, 702–713 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Monnier, N. et al. A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum. Mol. Genet. 12, 1171–1178 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Barton-Davis, E. R., Cordier, L., Shoturma, D. I., Leland, S. E. & Sweeney, H. L. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J. Clin. Invest. 104, 375–381 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. MacArthur, D. G. & Lek, M. The uncertain road towards genomic medicine. Trends Genet. 28, 303–305 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Cowling, B. S. et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J. Clin. Invest. 124, 1350–1363 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Sabha, N. et al. PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J. Clin. Invest. 126, 3613–3625 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  196. Ravenscroft, G. et al. Cardiac α-actin over-expression therapy in dominant ACTA1 disease. Hum. Mol. Genet. 22, 3987–3997 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Nowak, K. J. et al. Nemaline myopathy caused by absence of α-skeletal muscle actin. Ann. Neurol. 61, 175–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Lawlor, M. W. et al. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum. Mol. Genet. 22, 1525–1538 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Fruen, B. R., Mickelson, J. R. & Louis, C. F. Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors. J. Biol. Chem. 272, 26965–26971 (1997).

    Article  CAS  PubMed  Google Scholar 

  200. Timmins, M. A. et al. Malignant hyperthermia testing in probands without adverse anesthetic reaction. Anesthesiology 123, 548–556 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Michalek-Sauberer, A. & Gilly, H. Prophylactic use of dantrolene in a patient with central core disease. Anesth. Analg. 86, 915–916 (1998).

    Article  CAS  PubMed  Google Scholar 

  202. Jungbluth, H., Dowling, J. J., Ferreiro, A. & Muntoni, F. 217th ENMC International Workshop: RYR1-related myopathies, Naarden, The Netherlands, 29–31 January 2016. Neuromuscul. Disord. 26, 624–633 (2016).

    Article  PubMed  Google Scholar 

  203. Andersson, D. C. & Marks, A. R. Fixing ryanodine receptor Ca leak — a novel therapeutic strategy for contractile failure in heart and skeletal muscle. Drug Discov. Today Dis. Mech. 7, e151–e157 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Marks, A. R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J. Clin. Invest. 123, 46–52 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Pold, R. et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes 54, 928–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Lanner, J. T. et al. AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of AMPK activation. Nat. Med. 18, 244–251 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  207. de Winter, J. M. et al. Troponin activator augments muscle force in nemaline myopathy patients with nebulin mutations. J. Med. Genet. 50, 383–392 (2013).

    Article  PubMed  Google Scholar 

  208. de Winter, J. M. et al. Effect of levosimendan on the contractility of muscle fibers from nemaline myopathy patients with mutations in the nebulin gene. Skelet. Muscle 5, 12 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  209. Amthor, H. & Hoogaars, W. M. Interference with myostatin/ActRIIB signaling as a therapeutic strategy for Duchenne muscular dystrophy. Curr. Gene Ther. 12, 245–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Durham, W. J. et al. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 133, 53–65 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Dowling, J. J. et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain 135, 1115–1127 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  212. Natera-de Benito, D. et al. KLHL40-related nemaline myopathy with a sustained, positive response to treatment with acetylcholinesterase inhibitors. J. Neurol. 263, 517–523 (2016).

    Article  CAS  PubMed  Google Scholar 

  213. Robb, S. A. et al. Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathies. Neuromuscul. Disord. 21, 379–386 (2011).

    Article  PubMed  Google Scholar 

  214. Gibbs, E. M. et al. Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J. Mol. Med. 91, 727–737 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Dowling, J. J. et al. Myotubular myopathy and the neuromuscular junction: a novel therapeutic approach from mouse models. Dis. Model. Mech. 5, 852–859 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Messina, S. et al. Pilot trial of salbutamol in central core and multi-minicore diseases. Neuropediatrics 35, 262–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Schreuder, L. T. et al. Successful use of albuterol in a patient with central core disease and mitochondrial dysfunction. J. Inherit. Metab. Dis. 33, S205–209 (2010).

    Article  PubMed  Google Scholar 

  218. Jungbluth, H., Dowling, J. J., Ferreiro, A. & Muntoni, F. 182nd ENMC International Workshop: RYR1-related myopathies, 15–17th April 2011, Naarden, The Netherlands. Neuromuscul. Disord. 22, 453–462 (2012).

    Article  PubMed  Google Scholar 

  219. Nguyen, M. A. et al. Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy. Brain 134, 3516–3529 (2011).

    Article  PubMed  Google Scholar 

  220. Ryan, M. M. et al. Dietary L-tyrosine supplementation in nemaline myopathy. J. Child Neurol. 23, 609–613 (2008).

    Article  PubMed  Google Scholar 

  221. Winter, L. et al. Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle. J. Clin. Invest. 124, 1144–1157 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Kusaczuk, M., Bartoszewicz, M. & Cechowska-Pasko, M. Phenylbutyric acid: simple structure — multiple effects. Curr. Pharm. Des. 21, 2147–2166 (2015).

    Article  CAS  PubMed  Google Scholar 

  223. Cuadrado-Tejedor, M., Ricobaraza, A. L., Torrijo, R., Franco, R. & Garcia-Osta, A. Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer's disease-like phenotype of a commonly used mouse model. Curr. Pharm. Des. 19, 5076–5084 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Lee, C. S. et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat. Commun. 8, 14659 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Vega, H., Agellon, L. B. & Michalak, M. The rise of proteostasis promoters. IUBMB Life 68, 943–954 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Yuste-Checa, P. et al. Pharmacological chaperoning: a potential treatment for PMM2-CDG. Hum. Mutat. 38, 160–168 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Kim, E., et al. Characterization of human cardiac calsequestrin and its deleterious mutants. J. Mol. Biol. 373, 1047–1057 (2007).

    Article  CAS  PubMed  Google Scholar 

  228. Tang, L., et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505, 56–61 (2014).

    Article  PubMed  CAS  Google Scholar 

  229. Zamoon, J., Mascioni, A., Thomas, D. D. & Veglia, G. NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys. J. 85, 2589–2598 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  230. Efremov, R. G., Leitner, A., Aebersold, R. & Raunser, S. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517, 39–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.J., S.T., F.Z., J.O., C.S., M.G. and F.M. researched data for the article. All authors made substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Francesco Muntoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jungbluth, H., Treves, S., Zorzato, F. et al. Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction. Nat Rev Neurol 14, 151–167 (2018). https://doi.org/10.1038/nrneurol.2017.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing