Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fat targets for skeletal health

Abstract

Emerging evidence points to a critical role for the skeleton in several homeostatic processes, including energy balance. The connection between fuel utilization and skeletal remodeling begins in the bone marrow with lineage allocation of mesenchymal stem cells to adipocytes or osteoblasts. Mature bone cells secrete factors that influence insulin sensitivity, and fat cells synthesize cytokines that regulate osteoblast differentiation; thus, these two pathways are closely linked. The emerging importance of the bone–fat interaction suggests that novel molecules could be used as targets to enhance bone formation and possibly prevent fractures. In this article, we discuss three pathways that could be pharmacologically targeted for the ultimate goal of enhancing bone mass and reducing osteoporotic fracture risk: the leptin, peroxisome proliferator-activated receptor gamma and osteocalcin pathways. Not surprisingly, because of the complex interactions across homeostatic networks, other pathways will probably be activated by this targeting, which could prove to be beneficial or detrimental for the organism. Hence, a more complete picture of energy utilization and skeletal remodeling will be required to bring any potential agents into the future clinical armamentarium.

Key Points

  • Bone and fat arise from the same mesenchymal stem cells in the bone marrow

  • Osteoblasts secrete factors that regulate insulin production and adipocyte sensitivity to insulin

  • Leptin is an adipokine that acts through the hypothalamus to regulate appetite and bone remodeling

  • Peripheral fat stores are hormonally active and might regulate bone turnover

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PPARγ regulates bone mass in the bone marrow milieu.
Figure 2: Central and peripheral leptin signaling.
Figure 3: The three distinct networks that link bone and fat.

Similar content being viewed by others

References

  1. Flier, J. S. Clinical review 94: What's in a name? In search of leptin's physiologic role. J. Clin. Endocrinol. Metab. 83, 1407–1413 (1998).

    CAS  PubMed  Google Scholar 

  2. Serre, C. M., Farlay, D., Delmas, P. D. & Chenu, C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone 25, 623–629 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Patel, M. S. & Elefteriou, F. The new field of neuroskeletal biology. Calcif. Tissue Int. 80, 337–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    Article  CAS  Google Scholar 

  6. Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Elefteriou, F. et al. Serum leptin level is a regulator of bone mass. Proc. Natl Acad. Sci. USA 101, 3258–3263 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, T. et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140, 1630–1638 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Steppan, C. M., Crawford, D. T., Chidsey Frink, K. L., Ke, H. & Swick, A. G. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept. 92, 73–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Cornish, J. et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 175, 405–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Hamrick, M. W., Pennington, C., Newton, D., Xie, D. & Isales, C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34, 376–383 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, S. M. et al. Association of leptin receptor polymorphisms Lys109Arg and Gln223Arg with serum leptin profile and bone mineral density in Korean women. Am. J. Obstet. Gynecol. 198, 421 e1–e8 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Koh, J. M. et al. Estrogen receptor α gene polymorphisms (Pvu II and Xba I) influence association between leptin receptor gene polymorphism (Gln223Arg) and bone mineral density in young men. Eur. J. Endocrinol. 147, 777–783 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Richert, L. et al. Bone mass in prepubertal boys is associated with a Gln223Arg amino acid substitution in the leptin receptor. J. Clin. Endocrinol. Metab. 92, 4380–4386 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Crabbe, P. et al. Are serum leptin and the Gln223Arg polymorphism of the leptin receptor determinants of bone homeostasis in elderly men? Eur. J. Endocrinol. 154, 707–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Fairbrother, U. L. et al. Leptin receptor genotype at Gln223Arg is associated with body composition, BMD, and vertebral fracture in postmenopausal Danish women. J. Bone Miner. Res. 22, 544–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Weiss, L. A., Barrett-Connor, E., von Muhlen, D. & Clark, P. Leptin predicts BMD and bone resorption in older women but not older men: the Rancho Bernardo study. J. Bone Miner. Res. 21, 758–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Thomas, T. et al. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29, 114–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Yamauchi, M. et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin. Endocrinol. (Oxf.) 55, 341–347 (2001).

    Article  CAS  Google Scholar 

  20. Blain, H. et al. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J. Clin. Endocrinol. Metab. 87, 1030–1035 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Sato, M. et al. Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J. Clin. Endocrinol. Metab. 86, 5273–5276 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Lorentzon, M., Landin, K., Mellstrom, D. & Ohlsson, C. Leptin is a negative independent predictor of areal BMD and cortical bone size in young adult Swedish men. J. Bone Miner. Res. 21, 1871–1878 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Filip, R. & Raszewski, G. Bone mineral density and bone turnover in relation to serum leptin, alpha-ketoglutarate and sex steroids in overweight and obese postmenopausal women. Clin. Endocrinol. (Oxf.) 70, 214–220 (2009).

    Article  CAS  Google Scholar 

  24. Jürimäe, J. & Jürimäe, T. Influence of insulin-like growth factor-1 and leptin on bone mineral content in healthy premenopausal women. Exp. Biol. Med. (Maywood) 231, 1673–1677 (2006).

    Article  Google Scholar 

  25. Jürimäe, J., Jürimäe, T., Leppik, A. & Kums, T. The influence of ghrelin, adiponectin, and leptin on bone mineral density in healthy postmenopausal women. J. Bone Miner. Metab. 26, 618–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Bonnet, N., Pierroz, D. D. & Ferrari, S. L. Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J. Musculoskelet. Neuronal Interact. 8, 94–104 (2008).

    CAS  PubMed  Google Scholar 

  27. Takeda, S. & Karsenty, G. Molecular bases of the sympathetic regulation of bone mass. Bone 42, 837–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Elefteriou, F. Neuronal signaling and the regulation of bone remodeling. Cell. Mol. Life Sci. 62, 2339–2349 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gat-Yablonski, G. et al. Leptin reverses the inhibitory effect of caloric restriction on longitudinal growth. Endocrinology 145, 343–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Kishida, Y. et al. Leptin regulates chondrocyte differentiation and matrix maturation during endochondral ossification. Bone 37, 607–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lorentzon, R., Alehagen, U. & Boquist, L. Osteopenia in mice with genetic diabetes. Diabetes Res. Clin. Pract. 2, 157–163 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Ealey, K. N., Fonseca, D., Archer, M. C. & Ward, W. E. Bone abnormalities in adolescent leptin-deficient mice. Regul. Pept. 136, 9–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Hamrick, M. W., Ding, K. H., Ponnala, S., Ferrari, S. L. & Isales, C. M. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J. Bone Miner. Res. 23, 870–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Engelbregt, M. J. et al. Body composition and bone measurements in intra-uterine growth retarded and early postnatally undernourished male and female rats at the age of 6 months: comparison with puberty. Bone 34, 180–186 (2004).

    Article  PubMed  Google Scholar 

  35. Friedman, S. M. et al. Growth deceleration and bone metabolism in nutritional dwarfing rats. Int. J. Food Sci. Nutr. 52, 225–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Tatsumi, S., Ito, M., Asaba, Y., Tsutsumi, K. & Ikeda, K. Life-long caloric restriction reveals biphasic and dimorphic effects on bone metabolism in rodents. Endocrinology 149, 634–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Boyer, P. M. et al. Bone status in an animal model of chronic sub-optimal nutrition: a morphometric, densitometric and mechanical study. Br. J. Nutr. 93, 663–669 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Handler, P., Baylin, G. J. & Follis, R. H. Jr. The effects of caloric restriction on skeletal growth: four figures. J. Nutr. 34, 677–689 (1947).

    Article  CAS  PubMed  Google Scholar 

  39. LaMothe, J. M., Hepple, R. T. & Zernicke, R. F. Selected contribution: bone adaptation with aging and long-term caloric restriction in Fischer 344 × Brown-Norway F1-hybrid rats. J. Appl. Physiol. 95, 1739–1745 (2003).

    Article  PubMed  Google Scholar 

  40. Lambert, J., Lamothe, J. M., Zernicke, R. F., Auer, R. N. & Reimer, R. A. Dietary restriction does not adversely affect bone geometry and mechanics in rapidly growing male wistar rats. Pediatr. Res. 57, 227–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Berrigan, D. et al. Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention. In Vivo 19, 667–674 (2005).

    CAS  PubMed  Google Scholar 

  42. Ferguson, V. L., Greenberg, A. R., Bateman, T. A., Ayers, R. A. & Simske, S. J. The effects of age and dietary restriction without nutritional supplementation on whole bone structural properties in C57BL/6J mice. Biomed. Sci. Instrum. 35, 85–91 (1999).

    CAS  PubMed  Google Scholar 

  43. Bouxsein, M. L. et al. Mice lacking beta-adrenergic receptors have increased bone mass, but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology 150, 144–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Shi, Y. et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc. Natl Acad. Sci. USA 105, 20529–20533 (2008).

    Article  PubMed  Google Scholar 

  45. Holloway, W. R. et al. Leptin inhibits osteoclast generation. J. Bone Miner. Res. 17, 200–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Gimble, J. M., Zvonic, S., Floyd, Z. E., Kassem, M. & Nuttall, M. E. Playing with bone and fat. J. Cell. Biochem. 98, 251–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hamrick, M. W. & Ferrari, S. L. Leptin and the sympathetic connection of fat to bone. Osteoporos. Int. 19, 905–912 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Martin, A. et al. Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology 146, 3652–3659 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Baek, K. & Bloomfield, S. A. Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J. Bone Miner. Res. doi:10.1359/jbmr.081241.

  50. Hamrick, M. W. Leptin, bone mass, and the thrifty phenotype. J. Bone Miner. Res. 19, 1607–1611 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Martin, A. et al. Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology 148, 3419–3425 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Welt, C. K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl J. Med. 351, 987–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Meisinger, C., Heier, M., Lang, O. & Doring, A. Beta-blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Augsburg cohort study. Osteoporos. Int. 18, 1189–1195 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Pasco, J. A. et al. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J. Bone Miner. Res. 19, 19–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Bonnet, N. et al. Protective effect of beta blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 40, 1209–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Reid, I. R. et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J. Clin. Endocrinol. Metab. 90, 5212–5216 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Kliewer, S. A. et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl Acad. Sci. USA 91, 7355–7359 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Knouff, C. & Auwerx, J. Peroxisome proliferator-activated receptor-gamma calls for activation in moderation: lessons from genetics and pharmacology. Endocr. Rev. 25, 899–918 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Cock, T. A., Houten, S. M. & Auwerx, J. Peroxisome proliferator-activated receptor-gamma: too much of a good thing causes harm. EMBO Rep. 5, 142–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hagman, J., Belanger, C., Travis, A., Turck, C. W. & Grosschedl, R. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev. 7, 760–773 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Jimenez, M. A., Akerblad, P., Sigvardsson, M. & Rosen, E. D. Critical role for Ebf1and Ebf2 in the adipogenic transcriptional cascade. Mol. Cell. Biol. 27, 743–757 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Elbrecht, A. et al. Molecular cloning, expression and characterization of human peroxisome proliferators activated receptors gamma 1 and gamma 2. Biochem. Biophys. Res. Commun. 224, 431–437 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Gimble, J. M. et al. Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol. Pharmacol. 50, 1087–1094 (1996).

    CAS  PubMed  Google Scholar 

  64. Lecka-Czernik, B. et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J. Cell. Biochem. 74, 357–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Shockley, K. R. et al. PPARγ2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J. Cell. Biochem. 106, 232–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akune, T. et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Invest. 113, 846–855 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wan, Y., Chong, L. W. & Evans, R. M. PPAR-γ regulates osteoclastogenesis in mice. Nat. Med. 13, 1496–1503 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Cock, T. A. et al. Enhanced bone formation in lipodystrophic PPARgamma(hyp/hyp) mice relocates haematopoiesis to the spleen. EMBO Rep. 5, 1007–1012 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tornvig, L., Mosekilde, L., Justesen, J., Falk, E. & Kassem, M. Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif. Tissue Int. 69, 46–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Aleo, M. D. et al. Mechanism and implications of brown adipose tissue proliferation in rats and monkeys treated with the thiazolidinedione darglitazone, a potent peroxisome proliferator-activated receptor-γ agonist. J. Pharmacol. Exp. Ther. 305, 1173–1182 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Li, M. et al. Surface-specific effects of a PPAR agonist, darglitazone, on bone in mice. Bone 39, 796–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Lazarenko, O., Rzonca, S., Suva, L. & Lecka-Czernik, B. Netoglitazone is a PPAR gamma ligand with selective effects on bone and fat. Bone 38, 74–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ackert-Bicknell, C. L. et al. Strain specific effects of Rosiglitazone on bone mass, body composition and serum insulin-like growth factor-I. Endocrinology 150, 1330–1340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gerstein, H. et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368, 1096–1105 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med. 351, 1106–1118 (2004).

    Article  PubMed  Google Scholar 

  76. Krentz, A. & Bailey, C. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65, 385–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Schwartz, A. V. et al. Thiazolidinedione (TZD) use and bone loss in older diabetic adults. J. Clin. Endocrinol. Metab. 91, 3349–3354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grey, A. et al. The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J. Clin. Endocrinol. Metab. 92, 1305–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Kahn, S. E. et al. Rosiglitazone-associated fractures in type 2 diabetes: an analysis from ADOPT. Diabetes Care 31, 845–851 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Meier, C. et al. Use of thiazolidinediones and fracture risk. Arch. Intern. Med. 168, 820–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Schwartz, A. V. TZDs and bone: a review of the recent clinical evidence. PPAR Res. 2008, 297893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rosen, C. J. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab. 7, 7–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Bonds, D. E. et al. Risk of fracture in women with type 2 diabetes: the Women's Health Initiative Observational Study. J. Clin. Endocrinol. Metab. 91, 3404–3410 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Melton, L. J. 3rd et al. A bone structural basis for fracture risk in diabetes. J. Clin. Endocrinol. Metab. 93, 4804–4809 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lawson, E. A. & Klibanski, A. Endocrine abnormalities in anorexia nervosa. Nat. Clin. Pract. Endocrinol. Metab. 4, 407–414 (2008).

    Article  PubMed  Google Scholar 

  86. Rosen, C. J. & Klibanski, A. Bone, fat and body composition: evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 122, 409–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Cui, Q., Wang, G. J. & Balian, G. Pluripotential marrow cells produce adipocytes when transplanted into steroid-treated mice. Connect. Tissue. Res. 41, 45–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. van Staa, T. P., Leufkens, H. G. & Cooper, C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos. Int. 13, 777–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hauschka, P. V., Lian, J. B., Cole, D. E. & Gundberg, C. M. Osteocalcin and matriz Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Murshed, M., Schinke, T., McKee, M. D. & Karsenty, G. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J. Cell. Biol. 165, 625–630 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ferron, M., Hinoi, E., Karsenty, G. & Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl Acad. Sci. USA 105, 5266–5270 (2008).

    Article  PubMed  Google Scholar 

  93. Hinoi, E. et al. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. J. Cell. Biol. 183, 1235–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Covey, S. D. et al. The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell. Metab. 4, 291–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Morioka, T. et al. Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J. Clin. Invest. 117, 2753–2756 (2007).

    Article  CAS  Google Scholar 

  96. Pittas, A. G., Harris, S. S., Eliades, M., Stark, P. & Dawson-Hughes, B. Association between serum osteocalcin and markers of metabolic phenotype. J. Clin. Endocrinol. Metab. 94, 827–832 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Kanazawa, I. et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 94, 45–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Kindblom, J. M. et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J. Bone Miner. Res. doi:10.1359/jbmr.081234.

  99. Delmas, P. D. Biochemical markers of bone turnover for the clinical investigation of osteoporosis. Osteoporos. Int. 3 (Suppl. 1), 81–86 (1993).

    Article  PubMed  Google Scholar 

  100. Boskey, A. L. et al. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23, 187–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rosen, C. J. Serotonin rising—the bone, brain, bowel connection. N. Engl. J. Med. 360, 957–959 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Rosen, C. J., Ackert-Bicknell, C. & Rodriguez, J. P. Marrow fat and the bone micro-environment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr. (in press).

  104. Olmsted-Davis, E. et al. Hypoxic adipocytes pattern early heterotopic bone formation. Am. J. Pathol. 170, 620–632 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH NIAMS grants AR 45433, 54604 to C. J. Rosen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford J. Rosen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, M., Devlin, M. & Rosen, C. Fat targets for skeletal health. Nat Rev Rheumatol 5, 365–372 (2009). https://doi.org/10.1038/nrrheum.2009.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing