Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory B cells in autoimmunity: developments and controversies

Abstract

Over a decade has now passed since the concept of B cells with a regulatory function was resurrected—B cells that produce antibodies with a suppressive effect were first reported in the 1960s and suppressor B cells in the 2000s. In the meantime, some aspects of regulatory B (BREG)-cell biology have been elucidated. Not only have scientists begun to unravel the mechanism of how BREG cells suppress immune responses and which cells they target, but their ontogeny and development has also begun to be determined. To date, key roles for BREG cells have been identified in the regulation of several immune-mediated processes, including autoimmunity and responses to infectious disease and cancer. This Review highlights these advances in the study of BREG cells, and outlines what is known about their phenotype as well as their suppressive role in autoimmunity from studies in both mice and humans. A particular emphasis is placed on BREG-cell function in rheumatic diseases.

Key Points

  • Regulatory B (BREG) cells potently suppress type I T-helper (TH1)-cell differentiation, inhibit autoimmune pathogenesis, restore immune homeostasis and repress antitumor immune responses (to promote cancer growth)

  • BREG cells suppress TH1-cell differentiation by the provision of interleukin (IL)-10 and via cell–cell contact

  • No definitive phenotype has been identified for BREG cells

  • Human BREG cells share several similarities with their rodent counterparts, including an immature phenotype and the capacity to suppress TH1-cell differentiation via the release of IL-10

  • Further studies on the ontogeny, phenotype and suppressive function of BREG cells are needed to understand their biology and function in the pathophysiology of autoimmune diseases, allergy, infection and cancer

  • Given the success in expanding BREG cells in vitro, BREG-cell-based therapy is a promising therapeutic avenue that could be useful in a wide range of immune diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinguishing markers of distinct BREG-cell subsets.
Figure 2: Generation and mechanisms of action of BREG cells.

Similar content being viewed by others

References

  1. Shimamura, T., Habu, S., Hashimoto, K. & Sasaki, S. Feedback suppression of the immune response in vivo. III. Lyt-1+ B cells are suppressor-inducer cells. Cell. Immunol. 83, 221–224 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Shimamura, T., Hashimoto, K. & Sasaki, S. Feedback suppression of the immune response in vivo. I. Immune B cells induce antigen-specific suppressor T cells. Cell. Immunol. 68, 104–113 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Shimamura, T., Hashimoto, K. & Sasaki, S. Feedback suppression of the immune response in vivo. II. Involvement of prostaglandins in the generation of suppressor-inducer B lymphocytes. Cell. Immunol. 69, 192–195 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Wolf, S. D., Dittel, B. N., Hardardottir, F. & Janeway, C. A. Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Mauri, C., Gray, D., Mushtaq, N. & Londei, M. Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med. 197, 489–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mizoguchi, A., Mizoguchi, E., Smith, R. N., Preffer, F. I. & Bhan, A. K. Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J. Exp. Med. 186, 1749–1756 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Mizoguchi, E., Mizoguchi, A., Preffer, F. I. & Bhan, A. K. Regulatory role of mature B cells in a murine model of inflammatory bowel disease. Int. Immunol. 12, 597–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Shimomura, Y. et al. Regulatory role of B-1 B cells in chronic colitis. Int. Immunol. 20, 729–737 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Yanaba, K., Bouaziz, J. D., Matsushita, T., Tsubata, T. & Tedder, T. F. The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 182, 7459–7472 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Garaud, S. et al. IL-10 production by B cells expressing CD5 with the alternative exon 1B. Ann. NY Acad. Sci. 1173, 280–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. O'Garra, A. & Howard, M. IL-10 production by CD5 B cells. Ann. NY Acad. Sci. 651, 182–199 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Evans, J. G. et al. Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 178, 7868–7878 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Gray, M., Miles, K., Salter, D., Gray, D. & Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl Acad. Sci. USA 104, 14080–14085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srivastava, B., Lindsley, R. C., Nikbakht, N. & Allman, D. Models for peripheral B cell development and homeostasis. Semin. Immunol. 17, 175–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Blair, P. A. et al. Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J. Immunol. 182, 3492–3502 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Barr, T. A., Brown, S., Ryan, G., Zhao, J. & Gray, D. TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells. Eur. J. Immunol. 37, 3040–3053 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lenert, P., Brummel, R., Field, E. H. & Ashman, R. F. TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J. Clin. Immunol. 25, 29–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. DiLillo, D. J., Matsushita, T. & Tedder, T. F. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann. NY Acad. Sci. 1183, 38–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Rafei, M. et al. A granulocyte–macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat. Med. 15, 1038–1045 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lundy, S. K. & Fox, D. A. Reduced Fas ligand-expressing splenic CD5+ B lymphocytes in severe collagen-induced arthritis. Arthritis Res. Ther. 11, R128 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lundy, S. K. Killer B lymphocytes: the evidence and the potential. Inflamm. Res. 58, 345–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Matsushita, T., Yanaba, K., Bouaziz, J. D., Fujimoto, M. & Tedder, T. F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. 118, 3420–3430 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lampropoulou, V. et al. TLR-activated B cells suppress T cell-mediated autoimmunity. J. Immunol. 180, 4763–4773 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Anderton, S. M. & Fillatreau, S. Activated B cells in autoimmune diseases: the case for a regulatory role. Nat. Clin. Pract. Rheumatol. 4, 657–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hussain, S. & Delovitch, T. L. Intravenous transfusion of BCR-activated B cells protects NOD mice from type 1 diabetes in an IL-10-dependent manner. J. Immunol. 179, 7225–7232 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Parekh, V. V. et al. B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-β 1. J. Immunol. 170, 5897–5911 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Huynh, M. L., Fadok, V. A. & Henson, P. M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest. 109, 41–50 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mann, M. K., Maresz, K., Shriver, L. P., Tan, Y. & Dittel, B. N. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J. Immunol. 178, 3447–3456 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Duddy, M. et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178, 6092–6099 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Duddy, M. E., Alter, A. & Bar-Or, A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J. Immunol. 172, 3422–3427 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Gantner, F. et al. CD40-dependent and -independent activation of human tonsil B cells by CpG oligodeoxynucleotides. Eur. J. Immunol. 33, 1576–1585 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Wagner, M. et al. IL-12p70-dependent TH1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J. Immunol. 172, 954–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Tu, W. et al. Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood 112, 2554–2562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng, J., Liu, Y., Lau, Y. L. & Tu, W. CD40-activated B cells are more potent than immature dendritic cells to induce and expand CD4+ regulatory T cells. Cell. Mol. Immunol. 7, 44–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Correale, J., Farez, M. & Razzitte, G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann. Neurol. 64, 187–199 (2008).

    Article  PubMed  Google Scholar 

  41. Tretter, T. et al. Induction of CD4+ T-cell anergy and apoptosis by activated human B cells. Blood 112, 4555–4564 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Chun, H. Y. et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J. Clin. Immunol. 27, 461–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anolik, J. H. et al. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 56, 3044–3056 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Palanichamy, A. et al. Novel human transitional B cell populations revealed by B cell depletion therapy. J. Immunol. 182, 5982–5993 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Sanz, I. Connective tissue diseases: The conundrum of B cell depletion in SLE. Nat. Rev. Rheumatol. 5, 304–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Cuss, A. K. et al. Expansion of functionally immature transitional B cells is associated with human-immunodeficient states characterized by impaired humoral immunity. J. Immunol. 176, 1506–1516 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. De Milito, A., Morch, C., Sonnerborg, A. & Chiodi, F. Loss of memory (CD27) B lymphocytes in HIV-1 infection. AIDS 15, 957–964 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ho, J. et al. Two overrepresented B cell populations in HIV-infected individuals undergo apoptosis by different mechanisms. Proc. Natl Acad. Sci. USA 103, 19436–19441 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malaspina, A. et al. Appearance of immature/transitional B cells in HIV-infected individuals with advanced disease: correlation with increased IL-7. Proc. Natl Acad. Sci. USA 103, 2262–2267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinez-Maza, O., Crabb, E., Mitsuyasu, R., Fahey, J. & Giorgi, J. Infection with the human immunodeficiency virus (HIV) is associated with an in vivo increase in B lymphocyte activation and immaturity. J. Immunol. 138, 3720–3724 (1987).

    CAS  PubMed  Google Scholar 

  52. Plebani, A. et al. A novel immunodeficiency characterized by the exclusive presence of transitional B cells unresponsive to CpG. Immunology 121, 183–188 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valencia, X., Yarboro, C., Illei, G. & Lipsky, P. E. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J. Immunol. 178, 2579–2588 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Sugimoto, K. et al. Inducible IL-12-producing B cells regulate TH2-mediated intestinal inflammation. Gastroenterology 133, 124–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Wei, B. et al. Integration of B cells and CD8+ T in the protective regulation of systemic epithelial inflammation. Clin. Immunol. 127, 303–312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei, B. et al. Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets. Proc. Natl Acad. Sci. USA 102, 2010–2015 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Watanabe, R. et al. Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J. Immunol. 184, 4801–4809 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Yanaba, K. et al. B-lymphocyte contributions to human autoimmune disease. Immunol. Rev. 223, 284–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Tian, J. et al. Lipopolysaccharide-activated B cells down-regulate TH1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 1081–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. Mauri's work is funded by grant MP/17707 from Arthritis Research UK (formerly the Arthritis Research Campaign) Program. P. A. Blair has been supported by the Oliver Bird Rheumatism Program and by grant P7575 from Lupus UK. He is currently funded by grant R080521 from Guy's and St Thomas Trust (awarded to G. Lombardi, Medical Research Council Centre for Transplantation, Kings College London).

Author information

Authors and Affiliations

Authors

Contributions

C. Mauri and P. A. Blair contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Claudia Mauri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauri, C., Blair, P. Regulatory B cells in autoimmunity: developments and controversies. Nat Rev Rheumatol 6, 636–643 (2010). https://doi.org/10.1038/nrrheum.2010.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing