Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using pharmacokinetic principles to optimize pain therapy

Abstract

Cyclo-oxygenase (COX) inhibitors are widely used to relieve musculoskeletal pain. These agents block the production of prostaglandins (PGs) at sites of inflammation by inhibiting the activity of two COX enzymes necessary for PG production and normal organ homeostasis. Inhibition of PG production at sites unrelated to pain is associated with adverse drug reactions (ADRs). The degree of analgesic efficacy, as well as the incidence and the localization of ADRs, are critically influenced by the pharmacokinetics (absorption, distribution and elimination) of these drugs. Ideally, sufficient and permanent inhibition of COX enzymes should be achieved in target tissues, with minimal ADRs. To minimize underdosing or overdosing, which result in therapeutic failure or ADRs, the COX inhibitor with the most appropriate pharmacokinetic properties should be selected on the basis of a thorough pharmacokinetic–pharmacodynamic analysis. In this Review, the pharmacokinetics of the prevailing COX inhibitors will be discussed and enigmatic aspects of these intensively used drugs will be considered.

Key Points

  • Cyclo-oxygenase (COX) inhibitors comprise substances with a broad spectrum of pharmacokinetic characteristics

  • Rapid onset of analgesia requires administration of COX inhibitors with fast absorption, such as solutions or uncoated tablets with salts of the respective compound

  • Among the COX inhibitors, only acidic compounds are currently considered to accumulate in the inflamed joint (deep compartment) and to confer long-term inhibition of COX2 when given at therapeutic doses

  • To achieve acute analgesic effects and to avoid toxic drug accumulation following long-term use, administration of a suitable initial loading dose followed by a smaller maintenance dose should be considered

  • Only >95% COX1 inhibition in platelets confers a clinically relevant inhibition of platelet aggregation; moreover, correlation analyses suggest that 80% COX2 inhibition is necessary for pain relief

  • Overdosing increases the incidence of adverse effects, but does not enhance analgesia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pathway of prostanoid synthesis and the role of the COX enzymes.
Figure 2: Discordant dose-response relationships between aspirin and the inhibition of platelet COX1 or analgesia related to COX2 inhibition.
Figure 3: Distribution of acidic and nonacidic COX inhibitors.
Figure 4: Doubling the dose of a COX2 inhibitor already eliciting full COX2 inhibition does not produce additional pharmacological effects but rather enhances dose-related ADRs.
Figure 5: Simulation of the pharmacokinetic profile of a short half-life (ibuprofen, t50: 2 h) and long half-life (etoricoxib, t50: 24 h) COX-inhibitor.

Similar content being viewed by others

References

  1. Hughes, D. A. & Aronson, J. K. A systematic review and empirical analysis of the relation between dose and duration of drug action. J. Clin. Pharmacol. 50, 17–26 (2010).

    Article  CAS  Google Scholar 

  2. Greenblatt, D. J. Elimination half-life of drugs: value and limitations. Annu. Rev. Med. 36, 421–427 (1985).

    Article  CAS  Google Scholar 

  3. Levy, G. & Gibaldi, M. Pharmacokinetics of drug action. Annu. Rev. Pharmacol. 12, 85–98 (1972).

    Article  CAS  Google Scholar 

  4. Fu, J. Y., Masferrer, J. L., Seibert, K., Raz, A. & Needleman, P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J. Biol. Chem. 265, 16737–16740 (1990).

    CAS  PubMed  Google Scholar 

  5. Xie, W. L., Chipman, J. G., Robertson, D. L., Erikson, R. L. & Simmons, D. L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl Acad. Sci. USA 88, 2692–2696 (1991).

    Article  CAS  Google Scholar 

  6. Ahmadi, S., Lippross, S., Neuhuber, W. L. & Zeilhofer, H. U. PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat. Neurosci. 5, 34–40 (2002).

    Article  CAS  Google Scholar 

  7. Zeilhofer, H. U. Prostanoids in nociception and pain. Biochem. Pharmacol. 73, 165–174 (2007).

    Article  CAS  Google Scholar 

  8. Grosser, T., Fries, S. & FitzGerald, G. A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest. 116, 4–15 (2006).

    Article  CAS  Google Scholar 

  9. Patrono, C. & Baigent, C. Low-dose aspirin, coxibs, and other NSAIDS: a clinical mosaic emerges. Mol. Interv. 9, 31–39 (2009).

    Article  CAS  Google Scholar 

  10. Hinz, B. & Brune, K. Can drug removals involving cyclooxygenase-2 inhibitors be avoided? A plea for human pharmacology. Trends Pharmacol. Sci. 29, 391–397 (2008).

    Article  CAS  Google Scholar 

  11. Aronoff, D. M., Boutaud, O., Marnett, L. J. & Oates, J. A. Inhibition of prostaglandin H2 synthases by salicylate is dependent on the oxidative state of the enzymes. J. Pharmacol. Exp. Ther. 304, 589–595 (2003).

    Article  CAS  Google Scholar 

  12. Palmer, J. D., Sparrow, O. C. & Iannotti, F. Postoperative hematoma: a 5-year survey and identification of avoidable risk factors. Neurosurgery 35, 1061–1064 (1994).

    Article  CAS  Google Scholar 

  13. Huntjens, D. R., Danhof, M. & Della Pasqua, O. E. Pharmacokinetic-pharmacodynamic correlations and biomarkers in the development of COX-2 inhibitors. Rheumatology (Oxford) 44, 846–859 (2005).

    Article  CAS  Google Scholar 

  14. Capone, M. L. et al. Pharmacodynamic interaction of naproxen with low-dose aspirin in healthy subjects. J. Am. Coll. Cardiol. 45, 1295–1301 (2005).

    Article  CAS  Google Scholar 

  15. Catella-Lawson, F. et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N. Engl. J. Med. 345, 1809–1817 (2001).

    Article  CAS  Google Scholar 

  16. MacDonald, T. M. & Wei, L. Effect of ibuprofen on cardioprotective effect of aspirin. Lancet 361, 573–574 (2003).

    Article  CAS  Google Scholar 

  17. US Department of Health and Human Services Information for Healthcare Professionals: Concomitant Use of Ibuprofen and Aspirin, [online] (2006).

  18. Wilner, K. D. et al. Celecoxib does not affect the antiplatelet activity of aspirin in healthy volunteers. J. Clin. Pharmacol. 42, 1027–1030 (2002).

    Article  CAS  Google Scholar 

  19. Gladding, P. A. et al. The antiplatelet effect of six non-steroidal anti-inflammatory drugs and their pharmacodynamic interaction with aspirin in healthy volunteers. Am. J. Cardiol. 101, 1060–1063 (2008).

    Article  CAS  Google Scholar 

  20. Greenberg, H. E. et al. A new cyclooxygenase-2 inhibitor, rofecoxib (VIOXX), did not alter the antiplatelet effects of low-dose aspirin in healthy volunteers. J. Clin. Pharmacol. 40, 1509–1515 (2000).

    Article  CAS  Google Scholar 

  21. Dallob, A. et al. Characterization of etoricoxib, a novel, selective COX-2 inhibitor. J. Clin. Pharmacol. 43, 573–585 (2003).

    Article  CAS  Google Scholar 

  22. Ouellet, M., Riendeau, D. & Percival, M. D. A high level of cyclooxygenase-2 inhibitor selectivity is associated with a reduced interference of platelet cyclooxygenase-1 inactivation by aspirin. Proc. Natl Acad. Sci. USA 98, 14583–14588 (2001).

    Article  CAS  Google Scholar 

  23. Rimon, G. et al. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. Proc. Natl Acad. Sci. USA 107, 28–33 (2010).

    Article  CAS  Google Scholar 

  24. Brune, K. & Hinz, B. Selective cyclooxygenase-2 inhibitors: similarities and differences. Scand. J. Rheumatol. 33, 1–6 (2004).

    Article  CAS  Google Scholar 

  25. Hinz, B., Renner, B. & Brune, K. Drug insight: cyclo-oxygenase-2 inhibitors—a critical appraisal. Nat. Clin. Pract. Rheumatol. 3, 552–560 (2007).

    Article  CAS  Google Scholar 

  26. Geisslinger, G., Menzel, S., Wissel, K. & Brune, K. Single dose pharmacokinetics of different formulations of ibuprofen and aspirin. Drug Invest. 5, 238–242 (1993).

    Article  CAS  Google Scholar 

  27. Fulkerson, J. P. & Folcik, M. A. Analgesia following arthroscopic surgery: comparison of diflunisal and acetaminophen with codeine. Arthroscopy 2, 108–110 (1986).

    Article  CAS  Google Scholar 

  28. Werner, U. et al. Celecoxib inhibits metabolism of cytochrome P450 2D6 substrate metoprolol in humans. Clin. Pharmacol. Ther. 74, 130–137 (2003).

    Article  CAS  Google Scholar 

  29. Laska, E. M. et al. The correlation between blood levels of ibuprofen and clinical analgesic response. Clin. Pharmacol. Ther. 40, 1–7 (1986).

    Article  CAS  Google Scholar 

  30. Farkouh, M. E. et al. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), cardiovascular outcomes: randomised controlled trial. Lancet 364, 675–684 (2004).

    Article  CAS  Google Scholar 

  31. Stüber, W. et al. Untersuchungen zur Bioverfügbarkeit von Diclofenac-Natrium aus einer neu entwickelten magensaftresistenten Pellet-Zubereitung. Pharm. Ztg 133, 29–35 (1988).

    Google Scholar 

  32. Colombo, G., Giombini, A., Pamich, T., Peruzzi, E. & Pisati, R. Diclofenac dispersible provides superior analgesia with faster onset of action compared to naproxen granular in patients with acute, painful, minor sports injuries. J. Sports Med. Phys. Fitness 37, 228–233 (1997).

    CAS  PubMed  Google Scholar 

  33. Griffin, M. R. et al. High frequency of use of rofecoxib at greater than recommended doses: cause for concern. Pharmacoepidemiol. Drug Saf. 13, 339–343 (2004).

    Article  CAS  Google Scholar 

  34. Roumie, C. L., Arbogast, P. G., Mitchel, E. F. Jr & Griffin, M. R. Prescriptions for chronic high-dose cyclooxygenase-2 inhibitors are often inappropriate and potentially dangerous. J. Gen. Intern. Med. 20, 879–883 (2005).

    Article  Google Scholar 

  35. Renner, B. et al. Absorption and distribution of etoricoxib in plasma, CSF and wound tissue in patients following hip surgery—a pilot study. Naunyn–Schmiedeberg's Arch. Pharmacol. 381, 127–136 (2010).

    Article  CAS  Google Scholar 

  36. Malmstrom, K. et al. Etoricoxib in acute pain associated with dental surgery: a randomized, double-blind, placebo- and active comparator-controlled dose-ranging study. Clin. Ther. 26, 667–679 (2004).

    Article  CAS  Google Scholar 

  37. Simmons, D. L., Botting, R. M. & Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56, 387–437 (2004).

    Article  CAS  Google Scholar 

  38. Brune, K. Persistence of NSAIDs at effect sites and rapid disappearance from side-effect compartments contributes to tolerability. Curr. Med. Res. Opin. 23, 2985–2995 (2007).

    Article  CAS  Google Scholar 

  39. Brune, K. & Furst, D. E. Combining enzyme specificity and tissue selectivity of cyclooxygenase inhibitors: towards better tolerability? Rheumatology (Oxford) 46, 911–919 (2007).

    Article  CAS  Google Scholar 

  40. Day, R. O., McLachlan, A. J., Graham, G. G. & Williams, K. M. Pharmacokinetics of nonsteroidal anti-inflammatory drugs in synovial fluid. Clin. Pharmacokinet. 36, 191–210 (1999).

    Article  CAS  Google Scholar 

  41. Graf, P., Glatt, M. & Brune, K. Acidic nonsteroid anti-inflammatory drugs accumulating in inflamed tissue. Experientia 31, 951–953 (1975).

    Article  CAS  Google Scholar 

  42. Dutta, S. K., Basu, S. K. & Sen, K. K. Binding of diclofenac sodium with bovine serum albumin at different tuemperatures, pH and ionic strengths. Indian J. Exp. Biol. 44, 123–127 (2006).

    CAS  PubMed  Google Scholar 

  43. Fowler, P. D., Shadforth, M. F., Crook, P. R. & John, V. A. Plasma and synovial fluid concentrations of diclofenac sodium and its major hydroxylated metabolites during long-term treatment of rheumatoid arthritis. Eur. J. Clin. Pharmacol. 25, 389–394 (1983).

    Article  CAS  Google Scholar 

  44. Doyle, M. J., Eichhold, T. H., Loomans, M. E., Farmer, R. W. & Kelm, G. R. Comparison of tebufelone distribution in rat blood plasma and inflamed and noninflamed tissues following peroral and intravenous administration. J. Pharm. Sci. 82, 847–850 (1993).

    Article  CAS  Google Scholar 

  45. Schweitzer, A., Hasler-Nguyen, N. & Zijlstra, J. Preferential uptake of the non steroid anti-inflammatory drug diclofenac into inflamed tissues after a single oral dose in rats. BMC Pharmacol. 9, 5 (2009).

    Article  CAS  Google Scholar 

  46. Elmquist, W. F., Chan, K. K. & Sawchuk, R. J. Transsynovial drug distribution: synovial mean transit time of diclofenac and other nonsteroidal antiinflammatory drugs. Pharm. Res. 11, 1689–1697 (1994).

    Article  CAS  Google Scholar 

  47. Scott, G. et al. Pharmacokinetics of lumiracoxib in plasma and synovial fluid. Clin. Pharmacokinet. 43, 467–478 (2004).

    Article  CAS  Google Scholar 

  48. Schrör, K., Mehta, P. & Mehta, J. L. Cardiovascular risk of selective cyclooxygenase-2 inhibitors. J. Cardiovasc. Pharmacol. Ther. 10, 95–101 (2005).

    Article  Google Scholar 

  49. McAdam, B. F. et al. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc. Natl Acad. Sci. USA 96, 272–277 (1999).

    Article  CAS  Google Scholar 

  50. Brune, K., Rainsford, K. D. & Schweitzer, A. Biodistribution of mild analgesics. Br. J. Clin. Pharmacol. 110 (Suppl. 2), 279S–284S (1980).

    Article  Google Scholar 

  51. Bianchi, M., Broggini, M., Balzarini, P., Franchi, S. & Sacerdote, P. Effects of nimesulide on pain and on synovial fluid concentrations of substance P, interleukin-6 and interleukin-8 in patients with knee osteoarthritis: comparison with celecoxib. Int. J. Clin. Pract. 61, 1270–1277 (2007).

    Article  CAS  Google Scholar 

  52. Maier, T. J. et al. Cellular membranes function as a storage compartment for celecoxib. J. Mol. Med. 87, 981–993 (2009).

    Article  CAS  Google Scholar 

  53. Brune, K. & Alpermann, H. Non-acidic pyrazoles: inhibition of prostaglandin production, carrageenan edema and yeast fever. Agents Actions 13, 360–363 (1983).

    Article  CAS  Google Scholar 

  54. Tatsuo, M. A. et al. Analgesic and antiinflammatory effects of dipyrone in rat adjuvant arthritis model. Inflammation 18, 399–405 (1994).

    Article  CAS  Google Scholar 

  55. Hinz, B., Cheremina, O. & Brune, K. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J. 22, 383–390 (2008).

    Article  CAS  Google Scholar 

  56. Hinz, B. et al. Dipyrone elicits substantial inhibition of peripheral cyclooxygenases in humans: new insights into the pharmacology of an old analgesic. FASEB J. 21, 2343–2351 (2007).

    Article  CAS  Google Scholar 

  57. Boardman, P. L. & Hart, F. D. Clinical measurement of the anti-inflammatory effects of salicylates in rheumatoid arthritis. BMJ 4, 264–268 (1967).

    Article  CAS  Google Scholar 

  58. Ring, E. F., Collins, A. J., Bacon, P. A. & Cosh, J. A. Quantitation of thermography in arthritis using multi-isothermal analysis. II. Effect of nonsteroidal anti-inflammatory therapy on the thermographic index. Ann. Rheum. Dis. 33, 353–356 (1974).

    Article  CAS  Google Scholar 

  59. Ouellet, M. & Percival, M. D. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms. Arch. Biochem. Biophys. 387, 273–280 (2001).

    Article  CAS  Google Scholar 

  60. Boutaud, O., Aronoff, D. M., Richardson, J. H., Marnett, L. J. & Oates, J. A. Determinants of the cellular specificity of acetaminophen as an inhibitor of prostaglandin H2 synthases. Proc. Natl Acad. Sci. USA 99, 7130–7135 (2002).

    Article  CAS  Google Scholar 

  61. Mielke, C. H. Jr. Comparative effects of aspirin and acetaminophen on hemostasis. Arch. Intern. Med. 141, 305–310 (1981).

    Article  CAS  Google Scholar 

  62. Niemi, T. T., Backman, J. T., Syrjälä, M. T., Viinikka, L. U. & Rosenberg, P. H. Platelet dysfunction after intravenous ketorolac or propacetamol. Acta Anaesthesiol. Scand. 44, 69–74 (2000).

    Article  CAS  Google Scholar 

  63. Munsterhjelm, E. et al. Dose-dependent inhibition of platelet function by acetaminophen in healthy volunteers. Anesthesiology 103, 712–717 (2005).

    Article  CAS  Google Scholar 

  64. Garcia Rodríguez, L. A. & Hernández-Díaz, S. The risk of upper gastrointestinal complications associated with nonsteroidal anti-inflammatory drugs, glucocorticoids, acetaminophen, and combinations of these agents. Arthritis Res. 3, 98–101 (2001).

    Article  Google Scholar 

  65. Rahme, E., Barkun, A., Nedjar, H., Gaugris, S. & Watson, D. Hospitalizations for upper and lower GI events associated with traditional NSAIDs and acetaminophen among the elderly in Quebec, Canada. Am. J. Gastroenterol. 103, 872–882 (2008).

    Article  CAS  Google Scholar 

  66. Hinz, B. et al. Lumiracoxib inhibits cyclo-oxygenase 2 completely at the 50 mg dose: is liver toxicity avoidable by adequate dosing? Ann. Rheum. Dis. 68, 289–291 (2009).

    Article  CAS  Google Scholar 

  67. Hammett, R. Urgent advice regarding management of patients taking lumiracoxib (Prexige). Australian Government Department of Ageing and Therapeutic Goods Administration [online], (2007).

    Google Scholar 

  68. Capone, M. L. et al. Clinical pharmacology of platelet, monocyte, and vascular cyclooxygenase inhibition by naproxen and low-dose aspirin in healthy subjects. Circulation 109, 1468–1471 (2004).

    Article  CAS  Google Scholar 

  69. Kearney, P. M. et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 332, 1302–1308 (2006).

    Article  CAS  Google Scholar 

  70. Goldstein, J. L. et al. Reduced incidence of upper gastrointestinal ulcer complications with the COX-2 selective inhibitor, valdecoxib. Aliment. Pharmacol. Ther. 20, 527–538 (2004).

    Article  CAS  Google Scholar 

  71. Chan, F. K. et al. Celecoxib versus diclofenac and omeprazole in reducing the risk of recurrent ulcer bleeding in patients with arthritis. N. Engl. J. Med. 347, 2104–2110 (2002).

    Article  CAS  Google Scholar 

  72. Lai, K. C. et al. Celecoxib compared with lansoprazole and naproxen to prevent gastrointestinal ulcer complications. Am. J. Med. 118, 1271–1278 (2005).

    Article  CAS  Google Scholar 

  73. Goldstein, J. L. et al. Video capsule endoscopy to prospectively assess small bowel injury with celecoxib, naproxen plus omeprazole, and placebo. Clin. Gastroenterol. Hepatol. 3, 133–141 (2005).

    Article  Google Scholar 

  74. Garcia Rodríguez, L. A., Tacconelli, S. & Patrignani, P. Role of dose potency in the prediction of risk of myocardial infarction associated with nonsteroidal anti-inflammatory drugs in the general population. J. Am. Coll. Cardiol. 52, 1628–1636 (2008).

    Article  Google Scholar 

  75. European Medicines Agency press release. European Medicines Agency recommends restricted use for piroxicam. European Medicines Agency [online], (2007).

  76. Benson, M. D., Aldo-Benson, M. & Brandt, K. D. Synovial fluid concentrations of diclofenac in patients with rheumatoid arthritis or osteoarthritis. Semin. Arthritis Rheum. 15 (2 Suppl. 1), 65–67 (1985).

    Article  CAS  Google Scholar 

  77. McCrea, J. D., Telford, A. M., Kaye, C. M. & Boyd, M. W. A comparison of plasma and synovial fluid profiles of standard and controlled-release formulations of ketoprofen in patients with rheumatoid arthritis. Curr. Med. Res. Opin. 10, 73–81 (1986).

    Article  CAS  Google Scholar 

  78. Wagner, J. G., Albert, K. S., Szpunar, G. J. & Lockwood, G. F. Pharmacokinetics of ibuprofen in man IV: absorption and disposition. J. Pharmacokinet. Biopharm. 12, 381–399 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. Brune, B. Renner and B. Hinz researched the data for the article and K. Brune and B. Hinz provided a substantial contribution to discussions of the content. K. Brune and B. Hinz wrote the article and K. Brune, B. Renner and B. Hinz contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Burkhard Hinz.

Ethics declarations

Competing interests

K. Brune is a consultant for Aventis, Bayer, Merck and Novartis, and is on the speakers bureau and receives grant/research support from these companies. B. Renner receives grant/research support from GlaxoSmithKline and Merck Sharp & Dohme. B. Hinz is a consultant for Novartis, is on the speakers bureau for Merck Sharp & Dohme and Novartis, receives grant/research support from Bayer and Merck Sharp & Dohme, Mundipharma Pfizer and Sanofi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, K., Renner, B. & Hinz, B. Using pharmacokinetic principles to optimize pain therapy. Nat Rev Rheumatol 6, 589–598 (2010). https://doi.org/10.1038/nrrheum.2010.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing