Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis

Abstract

Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is conflicting evidence regarding the role of muscle weakness in OA progression. In contrast, the literature suggests a role for afferent sensory dysfunction in OA progression but not necessarily in OA onset. The few pilot exercise studies performed in patients who are at risk of incident OA indicate a possibility for achieving preventive structure or load modifications. In contrast, large randomized controlled trials of patients with established OA have failed to demonstrate beneficial effects of strengthening exercises. Subgroups of individuals who are at increased risk of knee OA (such as those with previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset.

Key Points

  • Muscle weakness is a predictor of knee osteoarthritis onset

  • Afferent sensory dysfunction is a predictor of osteoarthritis progression

  • Exercise training interventions should address both muscle weakness and afferent sensory dysfunction

  • Exercise regimens that aim to achieve modification of joint loading or cartilage structure seem to be more promising in at-risk individuals or those with early disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Joint injury, obesity, age and sex are associated with muscle weakness and afferent sensory dysfunction.
Figure 2: The effects of knee malalignment on knee loading.
Figure 3: The afferent somatosensory system comprises the receptors, afferent neurons and central processing centers that permit the detection of a diverse range of environmental sensory inputs, including the tactile sense (touch), proprioception, temperature and nociception (pain).

Similar content being viewed by others

References

  1. Brandt, K. D. Putting some muscle into osteoarthritis. Ann. Intern. Med. 127, 154–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Mikesky, A. E., Meyer, A. & Thompson, K. L. Relationship between quadriceps strength and rate of loading during gait in women. J. Orthop. Res. 18, 171–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Hasler, E. M., Herzog, W., Leonard, T. R., Stano, A. & Nguyen, H. In vivo knee joint loading and kinematics before and after ACL transection in an animal model. J. Biomech. 31, 253–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Herzog, W. et al. Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. J. Biomech. 31, 1137–1145 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Johansson, H., Sjölander, P. & Sojka, P. A sensory role for the cruciate ligaments. Clin. Orthop. Relat. Res. 268, 161–178 (1991).

    Google Scholar 

  6. Segal, N. A. et al. Quadriceps weakness predicts risk for knee joint space narrowing in women in the MOST cohort. Osteoarthritis Cartilage 18, 769–775 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palmieri-Smith, R. M., Thomas, A. C., Karvonen-Gutierrez, C. & Sowers, M. F. Isometric quadriceps strength in women with mild, moderate, and severe knee osteoarthritis. Am. J. Phys. Med. Rehabil. 89, 541–548 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Radin, E. L. & Paul, I. L. Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissue and bone. Arthritis Rheum. 13, 139–144 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. McAlindon, T. E., Cooper, C., Kirwan, J. R. & Dieppe, P. A. Determinants of disability in osteoarthritis of the knee. Ann. Rheum. Dis. 52, 258–262 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blagojevic, M., Jinks, C., Jeffery, A. & Jordan, K. P. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18, 24–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Janssen, I., Heymsfield, S. B., Wang, Z. M. & Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 89, 81–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Lindle, R. S. et al. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J. Appl. Physiol. 83, 1581–1587 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Lewek, M. D., Rudolph, K. S. & Snyder-Mackler, L. Quadriceps femoris muscle weakness and activation failure in patients with symptomatic knee osteoarthritis. J. Orthop. Res. 22, 110–115 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hurley, M. V., Scott, D. L., Rees, J. & Newham, D. J. Sensorimotor changes and functional performance in patients with knee osteoarthritis. Ann. Rheum. Dis. 56, 641–648 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herzog, W., Adams, M. E., Matyas, J. R. & Brooks, J. G. Hindlimb loading, morphology and biochemistry of articular cartilage in the ACL-deficient cat knee. Osteoarthritis Cartilage 1, 243–251 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Brandt, K. D. et al. Anterior (cranial) cruciate ligament transection in the dog: a bona fide model of osteoarthritis, not merely of cartilage injury and repair. J. Rheumatol. 18, 436–446 (1991).

    CAS  PubMed  Google Scholar 

  17. Herzog, W. & Longino, D. The role of muscles in joint degeneration and osteoarthritis. J. Biomech. 40 (Suppl. 1), S54–S63 (2007).

    Article  PubMed  Google Scholar 

  18. Longino, D. Botulinum Toxin and a New Animal Model of Muscle Weakness. Thesis, University of Calgary (2003).

    Google Scholar 

  19. Longino, D., Frank, C. & Herzog, W. Acute botulinum toxin-induced muscle weakness in the anterior cruciate ligament-deficient rabbit. J. Orthop. Res. 23, 1404–1410 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Rehan Youssef, A., Longino, D., Seerattan, R., Leonard, T. & Herzog, W. Muscle weakness causes joint degeneration in rabbits. Osteoarthritis Cartilage 17, 1228–1235 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Suter, E. & Herzog, W. Does muscle inhibition after knee injury increase the risk of osteoarthritis? Exerc. Sport Sci. Rev. 28, 15–18 (2000).

    CAS  PubMed  Google Scholar 

  22. Snyder-Mackler, L., Binder-Macleod, S. A. & Williams, P. R. Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med. Sci. Sports Exerc. 25, 783–789 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Berchuck, M., Andriacchi, T. P., Bach, B. R. & Reider, B. Gait adaptations by patients who have a deficient anterior cruciate ligament. J. Bone Joint Surg. Am. 72, 871–877 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Neuman, P. et al. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am. J. Sports Med. 36, 1717–1725 (2008).

    Article  PubMed  Google Scholar 

  25. Slemenda, C. et al. Reduced quadriceps strength relative to body weight: a risk factor for knee osteoarthritis in women? Arthritis Rheum. 41, 1951–1959 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Radin, E. L., Orr, R. B., Kelman, J. L., Paul, I. L. & Rose, R. M. Effect of prolonged walking on concrete on the knees of sheep. J. Biomech. 15, 487–492 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. Simon, S. R., Radin, E. L., Paul, I. L. & Rose, R. M. The response of joints to impact loading. II. In vivo behavior of subchondral bone. J. Biomech. 5, 267–272 (1972).

    Article  CAS  PubMed  Google Scholar 

  28. Andriacchi, T. P. & Mundermann, A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr. Opin. Rheumatol. 18, 514–518 (2006).

    Article  PubMed  Google Scholar 

  29. Sharma, L. et al. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum. 41, 1233–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Felson, D. T., Goggins, J., Niu, J., Zhang, Y. & Hunter, D. J. The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum. 50, 3904–3909 (2004).

    Article  PubMed  Google Scholar 

  31. Cicuttini, F., Wluka, A., Hankin, J. & Wang, Y. Longitudinal study of the relationship between knee angle and tibiofemoral cartilage volume in subjects with knee osteoarthritis. Rheumatology (Oxford) 43, 321–324 (2004).

    Article  CAS  Google Scholar 

  32. Sharma, L. et al. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286, 188–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Chang, A. et al. Frequency of varus and valgus thrust and factors associated with thrust presence in persons with or at higher risk of developing knee osteoarthritis. Arthritis Rheum. 62, 1403–1411 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brouwer, G. M. et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 56, 1204–1211 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Hunter, D. J. et al. Knee alignment does not predict incident osteoarthritis: the Framingham osteoarthritis study. Arthritis Rheum. 56, 1212–1218 (2007).

    Article  PubMed  Google Scholar 

  36. Sharma, L. et al. Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann. Rheum. Dis. 69, 1940–1945 (2010).

    Article  PubMed  Google Scholar 

  37. Lohmander, L. S., Englund, P. M., Dahl, L. L. & Roos, E. M. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35, 1756–1769 (2007).

    Article  PubMed  Google Scholar 

  38. Oiestad, B. E., Engebretsen, L., Storheim, K. & Risberg, M. A. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am. J. Sports Med. 37, 1434–1443 (2009).

    Article  PubMed  Google Scholar 

  39. Roos, E. M. Joint injury causes knee osteoarthritis in young adults. Curr. Opin. Rheumatol. 17, 195–200 (2005).

    Article  PubMed  Google Scholar 

  40. Ageberg, E., Thomee, R., Neeter, C., Silbernagel, K. G. & Roos, E. M. Muscle strength and functional performance in patients with anterior cruciate ligament injury treated with training and surgical reconstruction or training only: a two to five-year followup. Arthritis Rheum. 59, 1773–1779 (2008).

    Article  PubMed  Google Scholar 

  41. Ageberg, E., Pettersson, A. & Friden, T. 15-year follow-up of neuromuscular function in patients with unilateral nonreconstructed anterior cruciate ligament injury initially treated with rehabilitation and activity modification: a longitudinal prospective study. Am. J. Sports Med. 35, 2109–2117 (2007).

    Article  PubMed  Google Scholar 

  42. Ageberg, E. Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation—using the anterior cruciate ligament-injured knee as model. J. Electromyogr. Kinesiol. 12, 205–212 (2002).

    Article  PubMed  Google Scholar 

  43. Sturnieks, D. L. et al. Knee strength and knee adduction moments following arthroscopic partial meniscectomy. Med. Sci. Sports Exerc. 40, 991–997 (2008).

    Article  PubMed  Google Scholar 

  44. Butler, R. J., Minick, K. I., Ferber, R. & Underwood, F. Gait mechanics after ACL reconstruction: implications for the early onset of knee osteoarthritis. Br. J. Sports Med. 43, 366–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Hootman, J., Fitzgerald, S., Macera, C. & Blair, S. Lower extremity muscle strength and risk of self-reported hip or knee osteoarthritis. J. Phys. Act. Health 1, 321–330 (2004).

    Article  Google Scholar 

  46. Segal, N. A. et al. Effect of thigh strength on incident radiographic and symptomatic knee osteoarthritis in a longitudinal cohort. Arthritis Rheum. 61, 1210–1217 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bennell, K. L., Hunt, M. A., Wrigley, T. V., Lim, B. W. & Hinman, R. S. Role of muscle in the genesis and management of knee osteoarthritis. Rheum. Dis. Clin. North Am. 34, 731–754 (2008).

    Article  PubMed  Google Scholar 

  48. Mikesky, A. E. et al. Effects of strength training on the incidence and progression of knee osteoarthritis. Arthritis Rheum. 55, 690–699 (2006).

    Article  PubMed  Google Scholar 

  49. Thorstensson, C. A., Henriksson, M., von Porat, A., Sjödahl, C. & Roos, E. M. The effect of eight weeks of exercise on knee adduction moment in early knee osteoarthritis—a pilot study. Osteoarthritis Cartilage 15, 1163–1170 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Roos, E. M. & Dahlberg, L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 52, 3507–3514 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Thorp, L. E. et al. The biomechanical effects of focused muscle training on medial knee loads in OA of the knee: a pilot, proof of concept study. J. Musculoskelet. Neuronal Interact. 10, 166–173 (2010).

    CAS  PubMed  Google Scholar 

  52. Ericsson, Y. B., Dahlberg, L. E. & Roos, E. M. Effects of functional exercise training on performance and muscle strength after meniscectomy: a randomized trial. Scand. J. Med. Sci. Sports 19, 156–165 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Amin, S. et al. Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum. 60, 189–198 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brandt, K. D. et al. Quadriceps strength in women with radiographically progressive osteoarthritis of the knee and those with stable radiographic changes. J. Rheumatol. 26, 2431–2437 (1999).

    CAS  PubMed  Google Scholar 

  55. Sharma, L., Dunlop, D. D., Cahue, S., Song, J. & Hayes, K. W. Quadriceps strength and osteoarthritis progression in malaligned and lax knees. Ann. Intern. Med. 138, 613–619 (2003).

    Article  PubMed  Google Scholar 

  56. Lim, B. W., Hinman, R. S., Wrigley, T. V., Sharma, L. & Bennell, K. L. Does knee malalignment mediate the effects of quadriceps strengthening on knee adduction moment, pain, and function in medial knee osteoarthritis? A randomized controlled trial. Arthritis Rheum. 59, 943–951 (2008).

    Article  PubMed  Google Scholar 

  57. Zhao, D. et al. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J. Orthop. Res. 25, 789–797 (2007).

    Article  PubMed  Google Scholar 

  58. Miyazaki, T. et al. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61, 617–622 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ettinger, W. H. Jr et al. A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The Fitness Arthritis and Seniors Trial (FAST). JAMA 277, 25–31 (1997).

    Article  PubMed  Google Scholar 

  60. Messier, S. P. et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet, and Activity Promotion Trial. Arthritis Rheum. 50, 1501–1510 (2004).

    Article  PubMed  Google Scholar 

  61. Chang, A. et al. Hip abduction moment and protection against medial tibiofemoral osteoarthritis progression. Arthritis Rheum. 52, 3515–3519 (2005).

    Article  PubMed  Google Scholar 

  62. Hinman, R. S. et al. Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res. (Hoboken) 62, 1190–1193 (2010).

    Article  Google Scholar 

  63. Bennell, K. et al. Hip strengthening reduces symptoms but not knee load in people with medial knee osteoarthritis and varus malalignment: a randomised controlled trial. Osteoarthritis Cartilage 18, 621–628 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Sled, E. A., Khoja, L., Deluzio, K. J., Olney, S. J. & Culham, E. G. Effect of a home program of hip abductor exercises on knee joint loading, strength, function, and pain in people with knee osteoarthritis: a clinical trial. Phys. Ther. 90, 895–904 (2010).

    Article  PubMed  Google Scholar 

  65. Block, J. A. & Shakoor, N. The biomechanics of osteoarthritis: implications for therapy. Curr. Rheumatol. Rep. 11, 15–22 (2009).

    Article  PubMed  Google Scholar 

  66. Konttinen, Y. T., Tiainen, V. M., Gomez-Barrena, E., Hukkanen, M. & Salo, J. Innervation of the joint and role of neuropeptides. Ann. N. Y. Acad. Sci. 1069, 149–154 (2006).

    Article  PubMed  Google Scholar 

  67. Refshaug, K. M. Proprioception and joint pathology. Adv. Exp. Med. Biol. 508, 95–101 (2002).

    Article  PubMed  Google Scholar 

  68. Sharma, L. Proprioceptive impairment in knee osteoarthritis. Rheum. Dis. Clin. North Am. 25, 299–314 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Hurley, M. V., Rees, J. & Newham, D. J. Quadriceps function, proprioceptive acuity and functional performance in healthy young, middle-aged and elderly subjects. Age Ageing 27, 55–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Pai, Y. C., Rymer, W. Z., Chang, R. W. & Sharma, L. Effect of age and osteoarthritis on knee proprioception. Arthritis Rheum. 40, 2260–2265 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Koralewicz, L. M. & Engh, G. A. Comparison of proprioception in arthritic and age-matched normal knees. J. Bone Joint Surg. Am. 82, 1582–1588 (2000).

    Article  PubMed  Google Scholar 

  72. Brandt, K. D. Neuromuscular aspects of osteoarthritis: a perspective. Novartis Found. Symp. 260, 49–58 (2004).

    PubMed  Google Scholar 

  73. O'Connor, B. L., Visco, D. M., Brandt, K. D., Myers, S. L. & Kalasinski, L. A. Neurogenic acceleration of osteoarthrosis. The effects of previous neurectomy of the articular nerves on the development of osteoarthrosis after transection of the anterior cruciate ligament in dogs. J. Bone Joint Surg. Am. 74, 367–376 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Bennell, K. L. et al. Relationship of knee joint proprioception to pain and disability in individuals with knee osteoarthritis. J. Orthop. Res. 21, 792–797 (2003).

    Article  PubMed  Google Scholar 

  75. Hall, M. C., Mockett, S. P. & Doherty, M. Relative impact of radiographic osteoarthritis and pain on quadriceps strength, proprioception, static postural sway and lower limb function. Ann. Rheum. Dis. 65, 865–870 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Felson, D. T. et al. The effects of impaired joint position sense on the development and progression of pain and structural damage in knee osteoarthritis. Arthritis Rheum. 61, 1070–1076 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shakoor, N., Furmanov, S., Nelson, D. E., Li, Y. & Block, J. A. Pain and its relationship with muscle strength and proprioception in knee OA: results of an 8-week home exercise pilot study. J. Musculoskelet. Neuronal Interact. 8, 35–42 (2008).

    CAS  PubMed  Google Scholar 

  78. Shakoor, N., Lee, K. J., Fogg, L. F. & Block, J. A. Generalized vibratory deficits in osteoarthritis of the hip. Arthritis Rheum. 59, 1237–1240 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ageberg, E., Flenhagen, J. & Ljung, J. Test-retest reliability of knee kinesthesia in healthy adults. BMC Musculoskelet. Disord. 8, 57 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Waxman, S. G. Clinical Neuroanatomy. Chapter 14: Somatosensory Systems [online], (2010).

    Google Scholar 

  81. Shakoor, N., Agrawal, A. & Block, J. A. Reduced lower extremity vibratory perception in osteoarthritis of the knee. Arthritis Rheum. 59, 117–121 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lund, H. et al. Movement detection impaired in patients with knee osteoarthritis compared to healthy controls: a cross-sectional case–control study. J. Musculoskelet. Neuronal Interact. 8, 391–400 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L. Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data, discussing content and writing the article, and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Ewa M. Roos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roos, E., Herzog, W., Block, J. et al. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis. Nat Rev Rheumatol 7, 57–63 (2011). https://doi.org/10.1038/nrrheum.2010.195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing