Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical features, pathogenesis and treatment of juvenile and adult dermatomyositis

Abstract

Juvenile and adult dermatomyositis (DM) have multiple commonalities, yet display differing prevalence of features, outcomes and comorbidities. In general, compared with the disease in adults, children with DM have more vasculopathy and a greater likelihood of calcinosis, periungual and gingival telangiectasias, and ulceration, but have a better long-term prognosis with improved survival. Adults with DM are more likely to have myositis-specific antibodies, develop interstitial lung disease, have amyopathic disease, and have a marked association with malignancy and other comorbidities. Both diseases have similar features on muscle biopsy and interferon gene signature, although subtle differences can exist in pathogenesis and pathology, such as more capillary loss and a greater degree of C5b–9 complement deposition in affected muscle of juvenile patients. Initiatives are underway to improve classification, markers of disease activity and ability to predict outcome of juvenile and adult DM. The purpose of this Review is to compare and contrast the unique features between juvenile and adult disease and to outline new initiatives in the field.

Key Points

  • Despite multiple commonalities between the two diseases, differences between adult and juvenile dermatomyositis (DM) do exist

  • Adults with DM are at an increased risk of malignancy and are more likely to develop interstitial lung disease

  • Juvenile DM is associated with increased vasculopathy, but children and adolescents with DM have improved long-term prognosis and survival

  • Consensus-driven treatment suggestions have been developed to understand best treatments for moderate juvenile DM, but the same consensus-driven treatment is lacking in adults

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetics and environmental factors predisposing to juvenile and adult DM.
Figure 2: Early pathological changes in juvenile and adult DM.

Similar content being viewed by others

References

  1. Rider, L. G. & Miller, F. W. Classification and treatment of the juvenile idiopathic inflammatory myopathies. Rheum. Dis. Clin. N. Am. 23, 619–655 (1997).

    Article  CAS  Google Scholar 

  2. Mammen, A. L. Dermatomyositis and polymyositis: clinical presentation, autoantibodies, and pathogenesis. Ann. NY Acad. Sci. 1184, 134–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Bitnum, S., Daeschner, C. W. Jr, Travis, L. B., Dodge, W. F. & Hopps, H. C. Dermatomyositis. J. Pediatr. 64, 101–131 (1964).

    Article  CAS  PubMed  Google Scholar 

  4. Ravelli, A. et al. Long-term outcome and prognostic factors of juvenile dermatomyositis: a multinational, multicenter study of 490 patients. Arthritis Care Res. 62, 63–72 (2010).

    Article  Google Scholar 

  5. Dankó, K., Ponyi, A., Constantin, T., Borgulya, G. & Szegedi, G. Long-term survival of patients with idiopathic inflammatory myopathies according to clinical features: a longitudinal study of 162 cases. Medicine 83, 35–42 (2004).

    Article  PubMed  Google Scholar 

  6. Mendez, E. P. et al. US incidence of juvenile dermatomyositis, 1995–1998: results from the National Institute of Arthritis and Musculoskeletal and Skin Diseases Registry. Arthritis Care Res. 49, 300–305 (2003).

    Article  Google Scholar 

  7. Oddis, C. V., Conte, C. G., Steen, V. D. & Medsger, T. A. Jr. Incidence of polymyositis-dermatomyositis: a 20-year study of hospital diagnosed cases in Allegheny County, PA 1963–1982. J. Rheumatol. 17, 1329–1334 (1990).

    CAS  PubMed  Google Scholar 

  8. Vargas-Leguas, H. et al. Polymyositis-dermatomyositis: incidence in Spain (1997–2004). Med. Clin. (Barc.) 129, 721–724 (2007).

    Article  Google Scholar 

  9. Cox, S., Limaye, V., Hill, C., Blumbergs, P. & Roberts-Thomson, P. Idiopathic inflammatory myopathies: diagnostic criteria, classification and epidemiological features. Int. J. Rheum. Dis. 13, 117–124 (2010).

    Article  PubMed  Google Scholar 

  10. Guseinova, D. et al. Comparison of clinical features and drug therapies among European and Latin American patients with juvenile dermatomyositis. Clin. Exp. Rheumatol. 29, 117–124 (2011).

    PubMed  Google Scholar 

  11. Mathiesen, P. R., Zak, M., Herlin, T. & Nielsen, S. M. Clinical features and outcome in a Danish cohort of juvenile dermatomyositis patients. Clin. Exp. Rheumatol. 28, 782–789 (2010).

    CAS  PubMed  Google Scholar 

  12. Sato, J. O. et al. A Brazilian registry of juvenile dermatomyositis: onset features and classification of 189 cases. Clin. Exp. Rheumatol. 27, 1031–1038 (2009).

    CAS  PubMed  Google Scholar 

  13. Rider, L. G. & Miller, F. W. Deciphering the clinical presentations, pathogenesis, and treatment of the idiopathic inflammatory myopathies. JAMA 305, 183–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis. N. Engl. J. Med. 292, 344–347 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Tomasova Studynkova, J., Charvat, F., Jarosova, K. & Vencovsky, J. The role of MRI in the assessment of polymyositis and dermatomyositis. Rheumatology 46, 1174–1179 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Lopez de Padilla, C. M., Vallejo, A. N., Lacomis, D., McNallan, K. & Reed, A. M. Extranodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum. 60, 1160–1172 (2009).

    Article  PubMed  Google Scholar 

  17. Ostrowski, R. A., Sullivan, C. L., Seshadri, R., Morgan, G. A. & Pachman, L. M. Association of normal nailfold end row loop numbers with a shorter duration of untreated disease in children with juvenile dermatomyositis. Arthritis Rheum. 62, 1533–1538 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stringer, E., Singh-Grewal, D. & Feldman, B. M. Predicting the course of juvenile dermatomyositis: significance of early clinical and laboratory features. Arthritis Rheum. 58, 3585–3592 (2008).

    Article  PubMed  Google Scholar 

  19. Rider, L. G. et al. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the myositis damage index. Arthriti Rheum. 60, 3425–3435 (2009).

    Article  Google Scholar 

  20. Horowitz, M., McNeil, J. D., Maddern, G. J., Collins, P. J. & Shearman, D. J. Abnormalities of gastric and esophageal emptying in polymyositis and dermatomyositis. Gastroenterology 90, 434–439 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Fathi, M., Lundberg, I. E. & Tomling, G. Pulmonary complications of polymyositis and dermatomyositis. Semin. Respir. Crit. Care Med. 28, 451–458 (2007).

    Article  PubMed  Google Scholar 

  22. Lowry, C. A. & Pilkington, C. A. Juvenile dermatomyositis: extramuscular manifestations and their management. Curr. Opin. Rheumatol. 21, 575–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Oliveri, M. B., Palermo, R., Mautalen, C. & Hubscher, O. Regression of calcinosis during diltiazem treatment in juvenile dermatomyositis. J. Rheumatol. 23, 2152–2155 (1996).

    CAS  PubMed  Google Scholar 

  24. Bowyer, S. L., Blane, C. E., Sullivan, D. B. & Cassidy, J. T. Childhood dermatomyositis: factors predicting functional outcome and development of dystrophic calcification. J. Pediatr. 103, 882–888 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Eidelman, N. et al. Microstructure and mineral composition of dystrophic calcification associated with the idiopathic inflammatory myopathies. Arthritis Res. Ther. 11, R159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huemer, C. et al. Lipodystrophy in patients with juvenile dermatomyositis—evaluation of clinical and metabolic abnormalities. J. Rheumatol. 28, 610–615 (2001).

    CAS  PubMed  Google Scholar 

  27. Lee, L. A. & Hobbs, K. F. Lipodystrophy and metabolic abnormalities in a case of adult dermatomyositis. J. Am. Acad. Dermatol. 57, S85–S87 (2007).

    Article  PubMed  Google Scholar 

  28. Marie, I. et al. Short term and long term outcome of interstitial lung disease in polymyositis and dermatomyositis: a series of 107 patients. Arthritis Rheum. http:dx.doi.org/10.1002/art.30513

  29. Sanner, H. et al. Pulmonary outcome in juvenile dermatomyositis: a case-control study. Ann. Rheum. Dis. 70, 86–91 (2011).

    Article  PubMed  Google Scholar 

  30. Connors, G. R., Christopher-Stine, L., Oddis, C. V. & Danoff, S. K. Interstitial lung disease associated with the idiopathic inflammatory myopathies: what progress has been made in the past 35 years? Chest 138, 1464–1474 (2010).

    Article  PubMed  Google Scholar 

  31. Sato, S. et al. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 52, 1571–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz, T., Sanner, H., Husebye, T., Flato, B. & Sjaastad, I. Cardiac dysfunction in juvenile dermatomyositis: a case-control study. Ann. Rheum. Dis. 70, 766–771 (2011).

    Article  PubMed  Google Scholar 

  33. Lundberg, I. E. The heart in dermatomyositis and polymyositis. Rheumatology (Oxford) 45 (Suppl. 4), iv18–iv21 (2006).

    Article  Google Scholar 

  34. Santos, M. J. & Fonseca, J. E. Metabolic syndrome, inflammation and atherosclerosis—the role of adipokines in health and in systemic inflammatory rheumatic diseases. Acta Reumatol. Port. 34, 590–598 (2009).

    PubMed  Google Scholar 

  35. Klein, R. Q., Teal, V., Taylor, L., Troxel, A. B. & Werth, V. P. Number, characteristics, and classification of patients with dermatomyositis seen by dermatology and rheumatology departments at a large tertiary medical center. J. Am. Acad. Dermatol. 57, 937–943 (2007).

    Article  PubMed  Google Scholar 

  36. Sato, S. & Kuwana, M. Clinically amyopathic dermatomyositis. Curr. Opin. Rheumatol. 22, 639–643 (2010).

    Article  PubMed  Google Scholar 

  37. Nagai, Y., Mizuno, T., Yoshizawa, C. & Ishikawa, O. Fatal interstitial pneumonia in juvenile dermatomyositis. Eur. J. Dermatol. 20, 208–210 (2010).

    PubMed  Google Scholar 

  38. Abe, Y. et al. Juvenile amyopathic dermatomyositis complicated by progressive interstitial pneumonia. Pediatr. Int. 52, 149–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Azuma, K. et al. Incidence and predictive factors for malignancies in 136 Japanese patients with dermatomyositis, polymyositis, and clinically amyopathic dermatomyositis. Mod. Rhematol. 21, 178–183 (2010).

    Article  Google Scholar 

  40. Morris, P. & Dare, J. Juvenile dermatomyositis as a paraneoplastic phenomenon: an update. J. Pediatr. Hematol. Oncol. 32, 189–191 (2010).

    Article  PubMed  Google Scholar 

  41. Sigurgeirsson, B., Lindelof, B., Edhag, O. & Allander, E. Risk of cancer in patients with dermatomyositis or polymyositis. A population-based study. N. Engl. J. Med. 326, 363–367 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Zahr, Z. A. & Baer, A. N. Malignancy in myositis. Curr. Rheumatol. Rep. 13, 208–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Guzman, J., Petty, R. E. & Malleson, P. N. Monitoring disease activity in juvenile dermatomyositis: the role of von Willebrand factor and muscle enzymes. J. Rheumatol. 21, 739–743 (1994).

    CAS  PubMed  Google Scholar 

  44. Vancsa, A. et al. Myositis-specific and myositis-associated antibodies in overlap myositis in comparison to primary dermatopolymyositis: relevance for clinical classification: retrospective study of 169 patients. Joint Bone Spine 77, 125–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Wedderburn, L. R. et al. HLA class II haplotype and autoantibody associations in children with juvenile dermatomyositis and juvenile dermatomyositis-scleroderma overlap. Rheumatology 46, 1786–1791 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. DeBenedetti, F., DeAmici, M., Aramini, L., Ruperto, N. & Martini, A. Correlation of serum neopterin concentrations with disease activity in juvenile dermatomyositis. Arch. Dis. Child. 69, 232–235 (1993).

    Article  CAS  Google Scholar 

  47. Rider, L. G. et al. Neopterin and quinolinic acid are surrogate measures of disease activity in the juvenile idiopathic inflammatory myopathies. Clin. Chem. 48, 1681–1688 (2002).

    CAS  PubMed  Google Scholar 

  48. Bilgic, H. et al. Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum. 60, 3436–3446 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Parodi, A. et al. Dermatomyositis in 132 patients with different clinical subtypes: cutaneous signs, constitutional symptoms, and circulating antibodies. Acta Derm. Venereol. 82, 48–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Brouwer, R. et al. Autoantibody profiles in the sera of European patients with myositis. Ann. Rheum. Dis. 60, 116–123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahler, M. & Raijmakers, R. Novel aspects of autoantibodies to the PM/Scl complex: clinical, genetic and diagnostic insights. Autoimmun. Rev. 6, 432–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Ranque, B. et al. Myopathies related to systemic sclerosis: a case–control study of associated clinical and immunological features. Scand. J. Rheumatol. 39, 498–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Wedderburn, L. R. & Rider, L. G. Juvenile dermatomyositis: new developments in pathogenesis, assessment and treatment. Best Pract. Res. Clin. Rheumatol. 23, 665–678 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Imbert-Masseau, A., Hamidou, M., Agard, C., Grolleau, J. Y. & Cherin, P. Antisynthetase syndrome. Joint Bone Spine 70, 161–168 (2003).

    Article  PubMed  Google Scholar 

  55. Gunawardena, H. et al. Clinical associations of autoantibodies to a p155/140 kDa doublet protein in juvenile dermatomyositis. Rheumatology 47, 324–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Gunawardena, H. et al. Autoantibodies to a 140-kd protein in juvenile dermatomyositis are associated with calcinosis. Arthritis Rheum. 60, 1807–1814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaji, K. et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology (Oxford) 46, 25–28 (2007).

    Article  CAS  Google Scholar 

  58. Espada, G., Maldonado Cocco, J. A., Fertig, N. & Oddis, C. V. Clinical and serologic characterization of an Argentine pediatric myositis cohort: identification of a novel autoantibody (anti-MJ) to a 142-kDa protein. J. Rheumatol. 36, 2547–2551 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Khanna, S. & Reed, A. M. Immunopathogenesis of juvenile dermatomyositis. Muscle Nerve 41, 581–592 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Pachman, L. M., Jonasson, O., Cannon, R. A. & Friedman, J. M. Increased frequency of HLA-B8 in juvenile dermatomyositis. Lancet 2. 1238 (1977).

    Article  CAS  PubMed  Google Scholar 

  61. Mamyrova, G. et al. Immunogenetic risk and protective factors for juvenile dermatomyositis in Caucasians. Arthritis Rheum. 54, 3979–3987 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reed, A. M. & Stirling, J. D. The HLA-DQA1*0501 allele in multiple racial groups with juvenile dermatomyositis. Hum. Immunol. 44, 131–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Reed, A. M., Pachman, L. & Ober, C. Molecular genetic studies of major histocompatibility complex genes in children with juvenile dermatomyositis: increased risk associated with HLA-DQA1*0501. Hum. Immunol. 32, 235–240 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Wagner, M. S., McNallan, K. T., Crowson, C. S. & Reed, A. M. Discriminating functional variants in the IFN-inducible pathway in JDM and JIA. Arthritis Rheum. 58 (Suppl.), S499–S500 (2008).

    Google Scholar 

  65. Pachman, L. M. et al. TNFα–308A allele in juvenile dermatomyositis: association with increased production of tumor necrosis factor α, disease duration, and pathologic calcifications. Arthritis Rheum. 43, 2368–2377 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Chinoy, H. et al. Tumor necrosis factor-alpha single nucleotide polymorphisms are not independent of HLA class I in UK Caucasians with adult onset idiopathic inflammatory myopathies. Rheumatology 46, 1411–1416 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Mamyrova, G. et al. Cytokine gene polymorphisms as risk and severity factors for juvenile dermatomyositis. Arthritis Rheum. 58, 3941–3950 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chinoy, H. et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum. 58, 3247–3254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miles, L. et al. Predictability of the clinical course of juvenile dermatomyositis based on initial muscle biopsy: a retrospective study of 72 patients. Arthritis Rheum. 17, 725–730 (2007).

    Google Scholar 

  70. Pestronk, A., Schmidt, R. E. & Choksi, R. Vascular pathology in dermatomyositis and anatomic relations to myopathology. Muscle Nerve 42, 53–61 (2010).

    Article  PubMed  Google Scholar 

  71. Emslie-Smith, A. M. & Engel, A. G. Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann. Neurol. 27, 343–356 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Bohan, A., Peter, J. B., Bowman, R. L. & Pearson, C. M. A computer-assisted analysis of 153 patients with polymyositis and dermatomyositis. Medicine 56, 255–286 (1977).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. J. et al. Juvenile and adult dermatomyositis among the Chinese: a comparative study. Zhonghua Yi Xue Za Zhi (Taipei) 52, 285–292 (1993).

    CAS  Google Scholar 

  74. Lopez de Padilla, C. M. et al. Plasmacytoid dendritic cells in inflamed muscle of patients with juvenile dermatomyositis. Arthritis Rheum. 56, 1658–1668 (2007).

    Article  PubMed  Google Scholar 

  75. De Bleecker, J. L., Engel, A. G. & Butcher, E. C. Peripheral lymphoid tissue-like adhesion molecule expression in nodular infiltrates in inflammatory myopathies. Neuromuscul. Disord. 6, 255–260 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Van der Pas, J. Hengstman, G. J., ter Laak, H. J., Borm, G. F. & van Engelen, B. G. Diagnostic value of MHC class I staining in idiopathic inflammatory myopathies. J. Neurol. Neurosurg. Psychiatry 75, 136–139 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, C. K. et al. MHC Class I overexpression on muscles in early juvenile dermatomyositis. J. Rheumatol. 31, 605–609 (2004).

    CAS  PubMed  Google Scholar 

  78. Nagaraju, K. Role of major histocompatibility complex class I molecules in autoimmune myositis. Curr. Opin. Rheumatol. 17, 725–730 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Greenberg, S. A. et al. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 65, 1782–1787 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Chevrel, G. et al. Interleukin-17 increases the effects of IL-1 beta on muscle cells: arguments for the role of T cells in the pathogenesis of myositis. J. Neuroimmunol. 137, 125–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Page, G., Chevrel, G. & Miossec, P. Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: interaction with chemokines and Th1 cytokine-producing cells. Arthritis Rheum. 50, 199–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Tournadre, A. et al. Th1 and Th17 balance in inflammatory myopathies: interaction with dendritic cells and possible link with response to high-dose immunoglobulins. Cytokine 46, 297–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Englund, P., Nennesmo, I., Klareskog, L. & Lundberg, I. E. Interleukin-1α expression in capillaries and major histocompatibility complex class I expression in type II muscle fibers from polymyositis and dermatomyositis patients: important pathogenic features independent of inflammatory cell clusters in muscle tissue. Arthritis Rheum. 46, 1044–1055 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Sallum, A. M. et al. Difference in adhesion molecule expression (ICAM-1 and VCAM-1) in juvenile and adult dermatomyositis, polymyositis and inclusion body myositis. Autoimmun. Rev. 5, 93–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Lundberg, I., Kratz, A., Alexanderson, H. & Patarroyo, M. Decreased expression of interleukin-1α, interleukin-1β, and cell adhesion molecules in muscle tissue following corticosteroid treatment in patients with polymyositis and dermatomyositis. Arthritis Rheum. 43, 336–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Shrestha, S. et al. Lesional and nonlesional skin from patients with untreated juvenile dermatomyositis displays increased numbers of mast cells and mature plasmacytoid dendritic cells. Arthritis Rheum. 62, 2813–2822 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nagaraju, K. et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 52, 1824–1835 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Grimley, P. M. et al. Tubuloreticular inclusions in peripheral blood mononuclear cells related to systemic therapy with alpha-interferon. Lab. Invest. 52, 638–649 (1985).

    CAS  PubMed  Google Scholar 

  89. Kuyama, J. et al. Formation of tubuloreticular inclusions in mitogen-stimulated human lymphocyte cultures by endogenous or exogenous alpha-interferon. Ultrastuct. Pathol. 10, 77–85 (1986).

    Article  CAS  Google Scholar 

  90. Feldman, D., Goldstein, A. L., Cox, D. C. & Grimley, P. M. Cultured human endothelial cells treated with recombinant leukocyte A interferon. Tubuloreticular inclusion formation, antiproliferative effect, and 2′, 5′ oligoadenylate synthetase formation. Lab. Invest. 58, 584–589 (1988).

    CAS  PubMed  Google Scholar 

  91. Tateyama, M. et al. Expression of tumor necrosis factor-α in muscles of polymyositis. J. Neurol. Sci. 146, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Loell, I. et al. Higher proportion of fast-twitch (type II) muscle fibres in idiopathic inflammatory myopathies—evident in chronic but not in untreated newly diagnosed patients. Clin. Physiol. Funct. Imaging 31, 18–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Grundtman, C. et al. Immunolocalization of interleukin-1 receptors in the sarcolemma and nuclei of skeletal muscle in patients with idiopathic inflammatory myopathies. Arthritis Rheum. 56, 674–687 (2007).

    Article  PubMed  Google Scholar 

  94. Ishii, W. et al. Flow cytometric analysis of lymphocyte subpopulation and Th1/Th2 balance in patients with polymyositis and dermatomyositis. Intern. Med. 47, 1593–1599 (2008).

    Article  PubMed  Google Scholar 

  95. Eisenstein, D. M., O'Gorman, M. R. & Pachman, L. M. Correlations between change in disease activity and changes in peripheral blood lymphocyte subsets in patients with juvenile dermatomyositis. J. Rheumatol. 24, 1830–1832 (1997).

    CAS  PubMed  Google Scholar 

  96. O'Gorman, M. R., Bianchi, L., Zaas, D., Corrochano, V. & Pachman, L. M. Decreased levels of CD54 (ICAM-1)-positive lymphocytes in the peripheral blood in untreated patients with active juvenile dermatomyositis. Clin. Diagn. Lab. Immunol. 7, 693–697 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Viguier, M. et al. Blood lymphocyte subset counts in patients with dermatomyositis: clinical correlations and changes following therapy. Medicine 82, 82–86 (2003).

    Article  PubMed  Google Scholar 

  98. Reed, A. M., Shock, L. P. & Picornell, J. Chimerism in children with juvenile dermatomyositis. Lancet 356, 2156–2157 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Artlett, C. M. et al. Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies: Childhood Myositis Heterogeneity Collaborative Group. Lancet 356, 2155–2156 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Reed, A. M., McNallan, K., Wettstein, P., Vehe, R. & Ober, C. Does HLA-dependent chimerism underlie the pathogenesis of juvenile dermatomyositis? J. Immunol. 172, 5041–5046 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Stevens, A. M. Foreign cells in polymyositis: could stem cell transplantation and pregnancy-derived chimerism lead to the same disease? Curr. Rheumatol. Rep. 5, 437–444 (2003).

    Article  PubMed  Google Scholar 

  102. Manlhiot, C. et al. Assessment of an infectious disease history preceding juvenile dermatomyositis symptom onset. Rheumatology 47, 526–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Pachman, L. M. et al. History of infection before the onset of juvenile dermatomyositis: results from the National Institute of Arthritis and Musculoskeletal and Skin Diseases Research Registry. Arthritis Rheum. 53, 166–172 (2005).

    Article  PubMed  Google Scholar 

  104. Pachman, L. M. et al. Lack of detection of enteroviral RNA or bacterial DNA in magnetic resonance imaging-directed muscle biopsies from twenty children with active untreated juvenile dermatomyositis. Arthritis Rheum. 38, 1513–1518 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Vegosen, L. J. et al. Seasonal birth patterns in myositis subgroups suggest an etiologic role of early environmental exposures. Arthritis Rheum. 56, 2719–2728 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Love, L. A. et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum. 60, 2499–2504 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ramanan, A. V. et al. The effectiveness of treating juvenile dermatomyositis with methotrexate and aggressively tapered corticosteroids. Arthritis Rheum. 52, 3570–3578 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Stringer, E. et al. Treatment approaches to juvenile dermatomyositis (JDM) across North America: The Childhood Arthritis and Rheumatology Research Alliance (CARRA) JDM Treatment Survey. J. Rheum. 37, 1953–1961 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Miller, J., Walsh, Y. & Saminaden, S. Randomised double blind controlled trial of methotrexate and steroids compared with azathioprine and steroids in the treatment of idiopathic inflammatory myopathy. J. Neurol. Sci. 199 (Suppl. 1) S53 (2002).

    Google Scholar 

  110. Vencovsky, J. et al. Cyclosporine A versus methotrexate in the treatment of polymyositis and dermatomyositis. Scand. J. Rheumatol. 29, 95–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Villalba, L. et al. Treatment of refractory myositis: a randomized crossover study of two new cytotoxic regimens. Arthritis Rheum. 41, 392–399 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Dalakas, M. C. et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N. Engl. J. Med. 329, 1993–2000 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Marie, I. et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients. Arthritis Care Res. 62, 1748–1755 (2010).

    Article  CAS  Google Scholar 

  114. Manlhiot, C. et al. Safety of intravenous immunoglobulin in the treatment of juvenile dermatomyositis: adverse reactions are associated with immunoglobulin A content. Pediatrics 121, e626–e630 (2008).

    Article  PubMed  Google Scholar 

  115. Rouster-Stevens, K. A., Morgan, G. A., Wang, D. & Pachman, L. M. Mycophenolate mofetil: a possible therapeutic agent for children with juvenile dermatomyositis. Arthritis Care Res. 62, 1446–1451 (2010).

    Article  Google Scholar 

  116. Dagher, R. et al. Mycophenolate mofetil in juvenile dermatomyositis: a case series. Rheumatol. Int. http://dx.doi.org/10.1007/s00296-010-1653-5.

  117. Reiff, A. Preliminary evidence for cyclosporin A as an alternative in the treatment of recalcitrant juvenile rheumatoid arthritis and juvenile dermatomyositis. J. Rheumatol. 24, 2436–2443 (1997).

    CAS  PubMed  Google Scholar 

  118. Zeller, V., Cohen, P., Prieur, A. M. & Guillevin, L. Cyclosporin a therapy in refractory juvenile dermatomyositis. Experience and longterm followup of 6 cases. J. Rheumatol. 23, 1424–1427 (1996).

    CAS  PubMed  Google Scholar 

  119. Riley, P. et al. Effectiveness of infliximab in the treatment of refractory juvenile dermatomyositis with calcinosis. Rheumatology (Oxford) 47, 877–880 (2008).

    Article  CAS  Google Scholar 

  120. Marco Puche, A., Calvo Penades, I. & Lopez Montesinos, B. Effectiveness of the treatment with intravenous pamidronate in calcinosis in juvenile dermatomyositis. Clin. Exp. Rheumatol. 28, 135–140 (2010).

    CAS  PubMed  Google Scholar 

  121. Oliveri, M. B., Palermo, R., Mautalen, C. & Hubscher, O. Regression of calcinosis during diltiazem treatment in juvenile dermatomyositis. J. Rheumatol 23, 2152–2155 (1996).

    CAS  PubMed  Google Scholar 

  122. Vinen, C. S., Patel, S. & Bruckner, F. E. Regression of calcinosis associated with adult dermatomyositis following diltiazem therapy. Rheumatology (Oxford) 39, 333–334 (2000).

    Article  CAS  Google Scholar 

  123. Rios Fernandez, R., Callejas Rubio, J. L., Sanchez Cano, D., Saez Moreno, J. A. & Ortego Centeno, N. Rituximab in the treatment of dermatomyositis and other inflammatory myopathies. A report of 4 cases and review of the literature. Clin. Exp. Rheumatol. 27, 1009–1016 (2009).

    CAS  PubMed  Google Scholar 

  124. Oddis, C. V. et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis (DM) and adult polymyositis (PM)—The RIM Study [abstract L13]. Arthritis Rheum. 62, 3844 (2010).

    Google Scholar 

  125. Huber, A. M. et al. Protocols for the initial treatment of moderately severe juvenile dermatomyositis: results of a Children's Arthritis and Rheumatology Research Alliance Consensus Conference. Arthritis Care Res. 62, 219–225 (2010).

    Article  CAS  Google Scholar 

  126. Robinson, A. B. et al. Diagnostic evaluation and medication usage in a cohort of subjects with JDM from the CARRAnet Registry. Poster presented at the American College of Rheumatology Pediatric Rheumatology Symposium 2011.

  127. Feldman, B. M., Rider, L. G., Reed, A. M. & Pachman, L. M. Juvenile dermatomyositis and other idiopathic inflammatory myopathies of childhood. Lancet 371, 2201–2212 (2008).

    Article  PubMed  Google Scholar 

  128. Martin, N. et al. A national registry for juvenile dermatomyositis and other paediatric idiopathic inflammatory myopathies: 10 years' experience; The Juvenile Dermatomyositis National (UK and Ireland) Cohort Biomarker Study and Repository for Idiopathic Inflammatory Myopathies. Rheumatology 50, 137–145 (2007).

    Article  Google Scholar 

  129. Miller, F. W. In Arthritis and Allied Conditions: A Textbook of Rheumatology 15th edn (eds Koopman, W. & Moreland, L) 1593–1620 (Lippincott Williams & Wilkins, Philadelphia, (2005).

    Google Scholar 

  130. Fardet, L. et al. Factors associated with underlying malignancy in a retrospective cohort of 121 patients with dermatomyositis. Medicine 88, 91–97 (2009).

    Article  PubMed  Google Scholar 

  131. Ramanan, A. V. & Feldman, B. M. Clinical features and outcomes of juvenile dermatomyositis and other childhood onset myositis syndromes. Rheum. Dis. Clin. North Am. 52, 493–520 (2005).

    Google Scholar 

  132. Selva-O'Callaghan, A. et al. Nailfold capillary microscopy in adults with inflammatory myopathy. Semin. Arthritis Rheum. 39, 398–404 (2010).

    Article  PubMed  Google Scholar 

  133. Na, S. J., Kim, S. M., Sunwoo, I. N. & Choi, Y. C. Clinical characteristics and outcomes of juvenile and adult dermatomyositis. J. Korean Med. Sci. 24, 715–721 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Huber, A. M. et al. Medium- and long-term functional outcomes in a multicenter cohort of children with juvenile dermatomyositis. Arthritis Rheum. 43, 541–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Tse, S. et al. The arthritis of inflammatory childhood myositis syndromes. J. Rheumatol. 28, 192–197 (2001).

    CAS  PubMed  Google Scholar 

  136. Parodi, A. et al. Dermatomyositis in 132 patients with different clinical subtypes: cutaneous signs, constitutional symptoms and circulating antibodies. Acta Derm. Venereol. 82, 48–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Kang, E. H. et al. Myositis autoantibodies in Korean patients with inflammatory myositis: anti-140-kDa polypeptide antibody is primarily associated with rapidly progressive interstitial lung disease independent of clinically amyopathic dermatomyositis. BMC Musculoskelet. Disord. 11, 223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. O'Hanlon, T. P. et al. HLA polymorphisms in African Americans with idiopathic inflammatory myopathy: allelic profiles distinguish patients with different clinical phenotypes and myositis autoantibodies. Arthritis Rheum. 54, 3670–3681 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Yamasaki, Y. et al. Unusually high frequency of autoantibodies to PL-7 associated with milder muscle disease in Japanese patients with polymyositis/dermatomyositis. Arthritis Rheum. 54, 2004–2009 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Brouwer, R. et al. Autoantibody profiles in the sera of European patients with myositis. Ann. Rheum. Dis. 60, 116–123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Okada, S. et al. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum. 48, 2285–2293 (2003).

    Article  PubMed  Google Scholar 

  142. Hoshino, K. et al. Anti-MDA5 and anti-TIF1-γ antibodies have clinical significance for patients with dermatomyositis. Rheumatology (Oxford) 49, 1726–1733 (2010).

    Article  CAS  Google Scholar 

  143. Kaji, K. et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology (Oxford) 46, 25–28 (2007).

    Article  CAS  Google Scholar 

  144. Nakashima, R. et al. The RIG-1-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 49, 433–440 (2010).

    Article  CAS  Google Scholar 

  145. Hausmanowa-Petrusewicz, I. et al. Clinical, serologic, and immunogenetic features in Polish patients with idiopathic inflammatory myopathies. Arthritis Rheum. 40, 1257–1266 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Iannone, F. et al. T-lymphocyte immunophenotyping in polymyositis and dermatomyositis. Br. J. Rheumatol. 35, 839–845 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Jain, A. et al. Major histocompatibility complex class I and II detection as a diagnostic tool in idiopathic inflammatory myopathies. Arch. Pathol. Lab. Med. 131, 1070–1076 (2007).

    CAS  PubMed  Google Scholar 

  148. Wedderburn, L. R. et al. International consensus on a proposed score system for muscle biopsy evaluation in patients with juvenile dermatomyositis: a tool for potential use in clinical trials. Arthritis Rheum. 57, 1192–1201 (2007).

    Article  PubMed  Google Scholar 

  149. Mizuno, K. et al. Oligoclonal expansion of circulating and tissue-infiltrating CD8+ T cells with killer/effector phenotypes in juvenile dermatomyositis syndrome. Clin. Exp. Immunol. 137, 189–194 (2004).

    Article  CAS  Google Scholar 

  150. Choi, J. H. et al. Differential immunohistological features of inflammatory myopathies and dysferlinopathy. J. Korean Med. Sci. 24, 1015–1023 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wenzel, J. et al. Type 1 interferon-associated skin recruitment of CXCR3+ lymphocytes in dermatomyositis. Clin. Exp. Dermatol. 31, 576–581 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Waschbisch, A., Schwab, N., Ruck, T., Stenner, M. P. & Wiendl, H. FOXP3+ T regulatory cells in idiopathic inflammatory myopathies. J. Neuroimmunol. 225, 137–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Antiga, E. et al. Characterization of regulatory T cells in patients with dermatomyositis. J. Autoimmun. 35, 342–350 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Crowe, W. E., Bove, K. E., Levinson, J. E. & Hilton, P. K. Clinical and pathogenetic implications of histopathology in childhood polydermatomyositis. Arthritis Rheum. 25, 126–139 (1982).

    Article  CAS  PubMed  Google Scholar 

  155. Kissel, J. T., Mendell, J. R. & Rammohan, K. W. Microvascular deposition of complement membrane attack complex in dermatomyositis. N. Engl. J. Med. 314, 329–334 (1986).

    Article  CAS  PubMed  Google Scholar 

  156. Jain, A. et al. Detection of the membrane attack complex as a diagnostic tool in dermatomyositis. Acta Neurol. Scand. 123, 122–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Grundtman, C. et al. Immunolocalization of interleukin-1 receptors in the sarcolemma and nuclei of skeletal muscle in patients with idiopathic inflammatory myopathies. Arthritis Rheum. 56, 674–687 (2007).

    Article  PubMed  Google Scholar 

  158. Fedczyna, T. O., Lutz, J. & Pachman, L. M. Expression of TNFα by muscle fibers in biopsies from children with untreated juvenile dermatomyositis: association with the TNFα–308A allele. Clin. Immunol. 100, 236–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Hassan, A. B., Fathi, M., Dastmalchi, M., Lundberg, I. E. & Padyukov, L. Genetically determined imbalance between serum levels of tumour necrosis factor (TNF) and interleukin (IL)-10 is associated with anti-Jo-1 and anti-Ro52 autoantibodies in patients with poly- and dermatomyositis. J. Autoimmun. 27, 62–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Chinoy, H. et al. Clinical, serological and HLA profiles in non-Caucasian UK idiopathic inflammatory myopathy. Rheumatology (Oxford) 48, 591–592 (2009).

    Article  Google Scholar 

  161. O'Hanlon, T. P. et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA–A, −B, −Cw, −DRB1 and −DQA1 allelic profiles and motifs define clinicopathologic groups in Caucasians. Medicine (Baltimore) 84, 338–349 (2005).

    Article  CAS  Google Scholar 

  162. Chinoy, H. et al. In adult onset myositis, the presence of interstitial lung disease and myositis specific/associated antibodies are governed by HLA class II haplotype, rather than by myositis subtype. Arthritis Res. Ther. 8, R13 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Pachman, L. M., Fedczyna, T. O., Lechman, T. S. & Lutz, J. Juvenile dermatomyositis: the association of the TNF alpha–308A allele and disease chronicity. Curr. Rheumatol. Rep. 3, 379–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Werth, V. P., Callen, J. P., Ang, G. & Sullivan, K. E. Associations of tumor necrosis factor α and HLA polymorphisms with adult dermatomyositis: implications for a unique pathogenesis. J. Invest. Dermatol. 119, 617–620 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the State of Minnesota Partnership and the National Institute of Arthritis and Musculoskeletal and Skin Diseases for grant support.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching, discussing, writing, reviewing and editing the manuscript.

Corresponding author

Correspondence to Ann M. Reed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, A., Reed, A. Clinical features, pathogenesis and treatment of juvenile and adult dermatomyositis. Nat Rev Rheumatol 7, 664–675 (2011). https://doi.org/10.1038/nrrheum.2011.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing