Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Validation of new biomarkers in systemic autoimmune diseases

Abstract

Biomarkers have an important influence on the clinical decision-making processes involved in diagnosis, assessment of disease activity, allocation of treatment, and determining prognosis. The clinical usefulness of a biomarker is dependant on demonstration of its validity. Ideally, biomarkers should provide information not available from currently available tests and should be tested as they would be used in clinical practice; however, potential biomarkers could be affected by many different clinical or patient variables—such as disease activity, therapeutic intervention, or the presence of comorbidities—and validation studies might not include all the design features that are required to ensure that the biomarker is a true measure of the clinical process it is intended to reflect. In this Review, we appraise studies that have been conducted to validate six promising new biomarkers for diagnosis, disease activity assessment, or prognosis in patients with systemic autoimmune diseases. We discuss the validity of these six biomarkers with particular reference to the features of the studies that lend weight to or distract from their findings. The intent of this discussion is to draw attention to elements of validation study design that should be considered when evaluating the robustness of a biomarker, which differ according to the marker's intended use.

Key Points

  • Biomarkers are important for making informed decisions in the clinic, including those concerning diagnosis and allocation of treatment, as well as for assessing disease activity and prognosis

  • The clinical usefulness of any biomarker depends on the demonstration of its validity for a particular purpose

  • In the validation of biomarkers intended to aid diagnosis, greater attention needs to be placed on controlling or adjusting for the demographic and clinical characteristics of the disease being studied

  • Longitudinal studies are essential in the assessment of validity for biomarkers relating to disease activity and prognosis

  • New biomarkers of the greatest value are those that provide information that cannot be gained from existing tests

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atkinson, A. J. Jr et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article  Google Scholar 

  2. Muñoz, A. & Gange, S. J. Methodological issues for biomarkers and intermediate outcomes in cohort studies. Epidemiol. Rev. 20, 29–42 (1998).

    Article  PubMed  Google Scholar 

  3. Illei, G. G., Tackey, E., Lapteva, L. & Lipsky, P. E. Biomarkers in systemic lupus erythematosus. I. General overview of biomarkers and their applicability. Arthritis Rheum. 50, 1709–1720 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Ward, M. M. Evaluative laboratory testing. Assessing tests that assess disease activity. Arthritis Rheum. 38, 1555–1563 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Tektonidou, M. G. & Ward, M. M. Validity of clinical associations of biomarkers in translational research studies: the case of systemic autoimmune diseases. Arthritis Res. Ther. 12, R179 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sackett, D. L. & Haynes, R. B. The architecture of diagnostic research. BMJ 324, 539–541 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baroni, S. S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Gabrielli, A. et al. Stimulatory autoantibodies to the PDGF receptor: a link to fibrosis in scleroderma and a pathway for novel therapeutic targets. Autoimmun. Rev. 7, 121–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Svegliati, S. et al. Stimulatory autoantibodies to PDGF receptor in patients with extensive chronic graft-versus-host disease. Blood 110, 237–241 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Classen, J. F. et al. Lack of evidence of stimulatory autoantibodies to platelet-derived growth factor receptor in patients with systemic sclerosis. Arthritis Rheum. 60, 1137–1144 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Loizos, N. et al. Lack of detection of agonist activity by antibodies to platelet-derived growth factor receptor α in a subset of normal and systemic sclerosis patient sera. Arthritis Rheum. 60, 1145–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Gabrielli, A., Moroncini, G., Svegliati, S. & Avvedimento, E. V. Autoantibodies against the platelet-derived growth factor receptor in scleroderma: comment on the articles by Classen et al. and Loizos et al. Arthritis Rheum. 60, 3521–3522 (2009).

    Article  PubMed  Google Scholar 

  13. Balada, E. et al. Anti-PDGFR-α antibodies measured by non-bioactivity assays are not specific for systemic sclerosis. Ann. Rheum. Dis. 67, 1027–1029 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kurasawa, K. et al. Autoantibodies against platelet-derived growth factor receptor alpha in patients with systemic lupus erythematosus. Mod. Rheumatol. 20, 458–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Becker, K. L., Nylén, E. S., White, J. C., Müller, B. & Snider, R. H. Jr. Clinical review 167: procalcitonin and the calcitonin gene family in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J. Clin. Endocrinol. Metab. 89, 1512–1525 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Simon, L., Gauvin, F., Amre, D. K., Saint-Louis, P. & Lacroix, J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin. Infect. Dis. 39, 206–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, B. M., Eslick, G. D., Craig, J. C. & McLean, A. S. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect. Dis. 7, 210–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Eberhard, O. K. et al. Usefulness of procalcitonin for differentiation between activity of systemic autoimmune disease (systemic lupus erythematosus/systemic antineutrophil cytoplasmic antibody-associated vasculitis) and invasive bacterial infection. Arthritis Rheum. 40, 1250–1256 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Shin, K. C. et al. Serum procalcitonin measurement for detection of intercurrent infection in febrile patients with SLE. Ann. Rheum. Dis. 60, 988–989 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lanoix, J. P. et al. Serum procalcitonin does not differentiate between infection and disease flare in patients with systemic lupus erythematosus. Lupus 20, 125–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Moosig, F., Csernok, E., Reinhold-Keller, E., Schmitt, W. & Gross, W. L. Elevated procalcitonin levels in active Wegener's granulomatosis. J. Rheumatol. 25, 1531–1533 (1998).

    CAS  PubMed  Google Scholar 

  22. Schwenger, V., Sis, J., Breitbart, A. & Andrassy, K. CRP levels in autoimmune disease can be specified by measurement of procalcitonin. Infection 26, 274–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Zycinska, K., Wardyn, K. A., Zielonka, T. M., Tyszko, P. & Straburzynski, M. Procalcitonin as an indicator of systemic response to infection in active pulmonary Wegener's granulomatosis. J. Physiol. Pharmacol. 59 (Suppl. 6), 839–844 (2008).

    PubMed  Google Scholar 

  24. Tamaki, K. et al. Diagnostic accuracy of serum procalcitonin concentrations for detecting systemic bacterial infection in patients with systemic autoimmune diseases. J. Rheumatol. 35, 114–119 (2008).

    CAS  PubMed  Google Scholar 

  25. Scirè, C. A. et al. Diagnostic value of procalcitonin measurement in febrile patients with systemic autoimmune diseases. Clin. Exp. Rheumatol. 24, 123–128 (2006).

    PubMed  Google Scholar 

  26. Chen, D. Y. et al. Diagnostic value of procalcitonin for differentiation between bacterial infection and non-infectious inflammation in febrile patients with active adult-onset Still's disease. Ann. Rheum. Dis. 68, 1074–1075 (2009).

    Article  PubMed  Google Scholar 

  27. Griffiths, B., Mosca, M. & Gordon, C. Assessment of patients with systemic lupus erythematosus and the use of lupus disease activity indices. Best Pract. Res. Clin. Rheumatol. 19, 685–708 (2005).

    Article  PubMed  Google Scholar 

  28. Liu, C. C. & Ahearn, J. M. The search for lupus biomarkers. Best Pract. Res. Clin. Rheumatol. 23, 507–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirou, K. A. et al. Coordinate overexpression of interferon-α-induced genes in systemic lupus erythematosus. Arthritis Rheum. 50, 3958–3967 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Baechler, E. C., Gregersen, P. K. & Behrens, T. W. The emerging role of interferon in human systemic lupus erythematosus. Curr. Opin. Immunol. 16, 801–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kirou, K. A. et al. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Feng, X. et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 2951–2962 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Nikpour, M., Dempsey, A. A., Urowitz, M. B., Gladman, D. D. & Barnes, D. A. Association of a gene expression profile from whole blood with disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 67, 1069–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Landolt-Marticorena, C. et al. Lack of association between the interferon-α signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 68, 1440–1446 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Kaneko H. et al. Circulating levels of beta-chemokines in systemic lupus erythematosus. J. Rheumatol. 26, 568–573 (1999).

    CAS  PubMed  Google Scholar 

  38. Lit, L. C., Wong, C. K., Tam, L. S., Li, E. K. & Lam, C. W. Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 65, 209–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Fu, Q. et al. Association of elevated transcript levels of interferon-inducible chemokines with disease activity and organ damage in systemic lupus erythematosus patients. Arthritis Res. Ther. 10, R112 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Narumi, S., Takeuchi, T., Kobayashi, Y. & Konishi, K. Serum levels of IFN-inducible protein-10 relating to the activity of systemic lupus erythematosus. Cytokine 12, 1561–1565 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Bauer, J. W. et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 3, e491 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vilá, L. M. et al. Association of serum MIP-1α, MIP-1β, and RANTES with clinical manifestations, disease activity, and damage accrual in systemic lupus erythematosus. Clin. Rheumatol. 26, 718–722 (2007).

    Article  PubMed  Google Scholar 

  43. Bauer, J. W. et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 60, 3098–3107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buyon, J. P., Tamerius, J., Belmont, H. M. & Abramson, S. B. Assessment of disease activity and impending flare in patients with systemic lupus erythematosus. Comparison of the use of complement split products and conventional measurements of complement. Arthritis Rheum. 35, 1028–1037 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Calano, S. J. et al. Cell-bound complement activation products (CB-CAPs) as a source of lupus biomarkers. Adv. Exp. Med. Biol. 586, 381–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Manzi, S., Ahearn, J. M. & Salmon, J. New insights into complement: a mediator of injury and marker of disease activity in systemic lupus erythematosus. Lupus 13, 298–303 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Manzi, S. et al. Measurement of erythrocyte C4d and complement receptor 1 in systemic lupus erythematosus. Arthritis Rheum. 50, 3596–3604 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Singh, V., Mahoney, J. A. & Petri, M. Erythrocyte C4d and complement receptor 1 in systemic lupus erythematosus. J. Rheumatol. 35, 1989–1993 (2008).

    CAS  PubMed  Google Scholar 

  49. Yang, D. H., Chang, D. M., Lai, J. H., Lin, F. H. & Chen, C. H. Usefulness of erythrocyte-bound C4d as a biomarker to predict disease activity in patients with systemic lupus erythematosus. Rheumatology (Oxford) 48, 1083–1087 (2009).

    Article  CAS  Google Scholar 

  50. Kao, A. H. et al. Erythrocyte C3d and C4d for monitoring disease activity in systemic lupus erythematosus. Arthritis Rheum. 62, 837–844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, C. C. et al. Reticulocytes bearing C4d as biomarkers of disease activity for systemic lupus erythematosus. Arthritis Rheum. 52, 3087–3099 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Navratil, J. S. et al. Platelet C4d is highly specific for systemic lupus erythematosus. Arthritis Rheum. 54, 670–674 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Garnero, P. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction, and therapy monitoring. Mol. Diagn. Ther. 12, 157–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Garnero, P., Rousseau, J. C. & Delmas, P. D. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 43, 953–968 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Garnero, P., Jouvenne, P., Buchs, N., Delmas, P. D. & Miossec, P. Uncoupling of bone metabolism in rheumatoid arthritis patients with or without joint destruction: assessment with serum type I collagen breakdown products. Bone 24, 381–385 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Garnero, P. et al. Association of baseline levels of markers of bone and cartilage degradation with long-term prognosis of joint damage in patients with early arthritis. The COBRA study. Arthritis Rheum. 46, 2847–2856 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Landewé, R. et al. Markers for type II collagen breakdown predict the effect of disease-modifying treatment on long-term radiographic progression in patients with rheumatoid arthritis. Arthritis Rheum. 50, 1390–1399 (2004).

    Article  PubMed  Google Scholar 

  58. Jansen, L. M. et al. Serological bone markers and joint damage in early polyarthritis. J. Rheumatol. 31, 1491–1496 (2004).

    PubMed  Google Scholar 

  59. Forsblad d'Elia, H. et al. Hormone replacement therapy, calcium and vitamin D3 versus calcium and vitamin D3 alone decreases markers of cartilage and bone metabolism in rheumatoid arthritis: a randomized controlled trial [ISRCTN46523456]. Arthritis Res. Ther. 6, R457–R468 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Syversen, S. W. et al. Cartilage and bone biomarkers in rheumatoid arthritis: prediction of 10-year radiographic progression. J. Rheumatol. 36, 266–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Wisłowska, M., Jakubicz, D., Stepień, K. & Cicha, M. Serum concentrations of formation (PINP) and resorption (Ctx) bone turnover markers in rheumatoid arthritis. Rheumatol. Int. 29, 1403–1409 (2009).

    Article  PubMed  Google Scholar 

  62. van Tuyl, L. H. et al. Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann. Rheum. Dis. 69, 1623–1628 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Christgau, S. et al. Collagen type II C-telopeptide fragments as an index of cartilage degradation. Bone 29, 209–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Garnero, P., Gineyts, E., Christgau, S., Finck, B. & Delmas, P. D. Association of baseline levels of urinary glucosyl-galactosyl-pyridinoline and type II collagen C-telopeptide with progression of joint destruction in patients with early rheumatoid arthritis. Arthritis Rheum. 46, 21–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Young-Min, S. et al. Biomarkers predict radiographic progression in early rheumatoid arthritis and perform well compared to traditional markers. Arthritis Rheum. 56, 3236–3247 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Marotte, H., Gineyts, E., Miossec, P. & Delmas, P. D. Effects of infliximab therapy on biological markers of synovium activity and cartilage breakdown in patients with rheumatoid arthritis. Ann. Rheum. Dis. 68, 1197–1200 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Hashimoto, J. et al. A combination of biochemical markers of cartilage and bone turnover, radiographic damage and body mass index to predict the progression of joint destruction in patients with rheumatoid arthritis treated with disease-modifying anti-rheumatic drugs. Mod. Rheumatol. 19, 273–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Christensen, A. F. et al. Differential association of the N-propeptide of collagen IIA (PIIANP) and collagen II C-telopeptide (CTX-II) with synovitis and erosions in early and longstanding rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 307–314 (2009).

    CAS  PubMed  Google Scholar 

  69. Christensen, A. F. et al. Uncoupling of collagen II metabolism in newly diagnosed, untreated rheumatoid arthritis is linked to inflammation and antibodies against cyclic citrullinated peptides. J. Rheumatol. 37, 1113–1120 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Maksymowych, W. P. et al. Reappraisal of OMERACT 8 draft validation criteria for a soluble biomarker reflecting structural damage endpoints in rheumatoid arthritis, psoriatic arthritis, and spondyloarthritis: the OMERACT 9 v2 criteria. J. Rheumatol. 36, 1785–1791 (2009).

    Article  PubMed  Google Scholar 

  71. Maksymowych, W. P. et al. Proposal for levels of evidence scheme for validation of a soluble biomarker reflecting damage endpoints in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis, and recommendations for study design. J. Rheumatol. 36, 1792–1799 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, USA.

Author information

Authors and Affiliations

Authors

Contributions

M. G. Tektonidou and M. M. Ward contributed equally to researching the data for the article, discussing the content, writing the article and reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Michael M. Ward.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tektonidou, M., Ward, M. Validation of new biomarkers in systemic autoimmune diseases. Nat Rev Rheumatol 7, 708–717 (2011). https://doi.org/10.1038/nrrheum.2011.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.157

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research