Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of antiphospholipid syndrome: understanding the antibodies

Abstract

Antiphospholipid antibodies (aPL) are both diagnostic markers for, and pathogenic drivers of, antiphospholipid syndrome (APS). Although the presence of aPL is a necessary pre-condition, APS-associated clotting is seemingly triggered by an additional 'second hit', frequently related to innate inflammatory immune responses. β2 glycoprotein I (β2GPI)-dependent aPL, the most important subset of these antibodies, mediate several—not necessarily alternative—thrombogenic mechanisms, mainly on the basis of their reactivity with β2GPI expressed on the membrane of cells that participate in the coagulation cascade. Recurrent pregnancy complications associated with aPL cannot be explained solely by thrombosis, and alternative pathogenic mechanisms have been reported. Although one in vivo model of fetal loss suggests a mechanism of aPL-mediated acute placental inflammation, other models and the histopathological examination of APS placentae do not support a widespread inflammatory signature. β2GPI-dependent aPL are thought to recognize their antigen on placental tissues, inhibit the growth and differentiation of trophoblasts, and eventually cause defective placentation. Why antibodies with similar antigen specificity produce different clinical manifestations is not clear. Characterization of the molecular basis of the pathogenic mechanisms involved, including the putative second hits and the role of complement activation, might offer an answer to this question.

Key Points

  • Antiphospholipid antibodies (aPL) are autoantibodies that are diagnostic of, and pathogenic in, antiphospholipid syndrome (APS)

  • aPL mediate several procoagulant mechanisms that can explain their thrombogenic effect in animal models, and their epidemiological association with APS in clinical studies

  • Whereas evidence shows that a second hit (usually an inflammatory event) is required for thrombus formation in APS, this requirement is less clear for fetal loss

  • In addition to placental thrombosis, other mechanisms for direct effects of aPL on placental tissues have been proposed

  • β2 glycoprotein I (β2GPI)-dependent autoantibodies seem to be the main pathogenic subpopulation of aPL

  • More information about the epitope specificity of anti-β2GPI aPL, as well as about the tissue expression of the target molecule, might help to better understand the pathogenesis of APS

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenic clotting mechanisms mediated by aPL.
Figure 2: Main effects of aPL on placenta.
Figure 3: Endothelial cell activation by anti-β2GPI autoantibodies.
Figure 4: aPL effects on trophoblasts.

Similar content being viewed by others

References

  1. Miyakis, S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 4, 295–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Giannakopoulos, B., Passam, F., Rahgozar, S. & Krilis, S. A. Current concepts on the pathogenesis of the antiphospholipid syndrome. Blood 109, 422–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Pierangeli, S. S. et al. Antiphospholipid antibodies and the antiphospholipid syndrome: pathogenic mechanisms. Semin. Thromb. Hemost. 34, 236–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. de Laat, B., Mertens, K. & de Groot. P. G. Mechanisms of disease: antiphospholipid antibodies—from clinical association to pathologic mechanism. Nat. Clin. Pract. Rheumatol. 4, 192–199 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Krone, K. A., Allen, K. L. & McCrae, K. R. Impaired fibrinolysis in the antiphospholipid syndrome. Curr. Rheumatol. Rep. 12, 53–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shoenfeld, Y., Meroni, P. L. & Toubi, E. Antiphospholipid syndrome and systemic lupus erythematosus: are they separate entities or just clinical presentations on the same scale? Curr. Opin. Rheumatol. 21, 495–500 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Katzav, A., Shoenfeld, Y. & Chapman, J. The pathogenesis of neural injury in animal models of the antiphospholipid syndrome. Clin. Rev. Allergy Immunol. 38, 196–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Pierangeli, S. S., Liu, S. W., Anderson, G., Barker, J. H. & Harris, E. N. Thrombogenic properties of murine anti-cardiolipin antibodies induced by β2 glycoprotein 1 and human immunoglobulin G antiphospholipid antibodies. Circulation 94, 1746–1751 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Jankowski, M. et al. Thrombogenicity of β2-glycoprotein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood 101, 157–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Ramesh, S. et al. Antiphospholipid antibodies promote leukocyte–endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J. Clin. Invest. 121, 120–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Fischetti, F. et al. Thrombus formation induced by antibodies to β2-glycoprotein I is complement dependent and requires a priming factor. Blood 10 6, 2340–2346 (2005).

    Article  CAS  Google Scholar 

  12. Espinola, R. G. et al. E-Selectin mediates pathogenic effects of antiphospholipid antibodies. J. Thromb. Haemost. 1, 843–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Vega-Ostertag, M. E. et al. Role of p38 mitogen-activated protein kinase in antiphospholipid antibody-mediated thrombosis and endothelial cell activation. J. Thromb. Haemost. 5, 1828–1834 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Romay-Penabad, Z. et al. Apolipoprotein E receptor 2 is involved in the thrombotic complications in a murine model of the antiphospholipid syndrome. Blood 117, 1408–1414 (2010).

    Article  PubMed  CAS  Google Scholar 

  15. Pierangeli, S. S. et al. Toll-like receptor and antiphospholipid mediated thrombosis: in vivo studies. Ann. Rheum. Dis. 66, 1327–1333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Laat, B. et al. An international multicentre-laboratory evaluation of a new assay to detect specifically lupus anticoagulants dependent on the presence of anti-β2-glycoprotein autoantibodies. J. Thromb. Haemost. 9, 149–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Vega-Ostertag, M., Liu, X., Kwan-Ki, H., Chen, P. & Pierangeli, S. A human monoclonal antiprothrombin antibody is thrombogenic in vivo and upregulates expression of tissue factor and E-selectin on endothelial cells. Br. J. Haematol. 135, 214–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, P. P. & Giles, I. Antibodies to serine proteases in the antiphospholipid syndrome. Curr. Rheumatol. Rep. 12, 45–52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Atsumi, T. et al. Association of autoantibodies against the phosphatidylserine–prothrombin complex with manifestations of the antiphospholipid syndrome and with the presence of lupus anticoagulant. Arthritis Rheum. 43, 1982–1993 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Bertolaccini, M. L., Atsumi, T., Koike, T., Hughes, G. R. & Khamashta, M. A. Antiprothrombin antibodies detected in two different assay systems. Prevalence and clinical significance in systemic lupus erythematosus. Thromb. Haemost. 93, 289–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Galli, M., Luciani, D., Bertolini, G. & Barbui, T. Anti-β2-glycoprotein I, antiprothrombin antibodies, and the risk of thrombosis in the antiphospholipid syndrome. Blood 102, 2717–2723 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Galli, M. et al. Clinical significance of different antiphospholipid antibodies in the WAPS (warfarin in the antiphospholipid syndrome) study. Blood 110, 1178–1183 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Meroni, P. L. Pathogenesis of the antiphospholipid syndrome: an additional example of the mosaic of autoimmunity. J. Autoimmun. 30, 99–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Tincani, A. et al. The anti-β2-glycoprotein I activity in human anti-phospholipid syndrome sera is due to monoreactive low-affinity autoantibodies directed to epitopes located on native β2-glycoprotein I and preserved during species' evolution. J. Immunol. 157, 5732–5738 (1996).

    CAS  PubMed  Google Scholar 

  25. Nevinsky, G. A. & Buneva, V. N. Natural catalytic antibodies in norm, autoimmune, viral, and bacterial diseases. ScientificWorldJournal 10, 1203–1233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, Y. H. et al. Identification of anti-prothrombin antibodies in the anti-phospholipid syndrome that display the prothrombinase activity. Rheumatology (Oxford) 49, 34–42 (2010).

    Article  CAS  Google Scholar 

  27. Passam, F. H. et al. β2 glycoprotein I is a substrate of thiol oxidoreductases. Blood 1 16, 1995–1997 (2010).

    Article  Google Scholar 

  28. Meroni, P. L. et al. Anti-phospholipid antibody mediated fetal loss: still an open question from a pathogenic point of view. Lupus 1 9, 453–456 (2010).

    Article  CAS  Google Scholar 

  29. Peaceman, A. M. & Rehnberg, K. A. The effect of immunoglobulin G fractions from patients with lupus anticoagulant on placental prostacyclin and thromboxane production. Am. J. Obstet. Gynecol. 169, 1403–1406 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Nayar, R. & Lage, J. M. Placental changes in a first trimester missed abortion in maternal systemic lupus erythematosus with antiphospholipid syndrome; a case report and review of the literature. Hum. Pathol. 27, 201–206 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Rand, J. H., Wu, X. X., Quinn, A. S. & Taatjes, D. J. The annexin A5-mediated pathogenic mechanism in the antiphospholipid syndrome: role in pregnancy losses and thrombosis. Lupus 19, 460–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Rand, J. H. et al. Reduction of annexin-V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recurrent spontaneous abortion. Am. J. Obstet. Gynecol. 171, 1566–1572 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Park, A. L. in Hughes' Syndrome (ed. Khamashta, M. A.) Ch. 28 Placental pathology in antiphospholipid syndrome, 362–374 (Springer-Verlag, London, 2006).

    Book  Google Scholar 

  34. Chaouat, G. The Th1/Th2 paradigm: still important in pregnancy? Semin. Immunopathol. 29, 95–113 (2007).

    Article  PubMed  Google Scholar 

  35. Holers, V. M. et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J. Exp. Med. 195, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Girardi, G. et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J. Clin. Invest. 112, 1644–1654 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berman, J., Girardi, G. & Salmon, J. E. TNF-α is a critical effector and a target for therapy in antiphospholipid antibody-induced pregnancy loss. J. Immunol. 174, 485–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Thurman, J. M. et al. A novel inhibitor of the alternative complement pathway prevents antiphospholipid antibody-induced pregnancy loss in mice. Mol. Immunol. 42, 87–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Girardi, G., Yarilin, D., Thurman, J. M., Holers, V. M. & Salmon, J. E. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J. Exp. Med. 203, 2165–2175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Redecha, P. et al. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110, 2423–2431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Redecha, P., Franzke, C. W., Ruf, W., Mackman, N. & Girardi, G. Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J. Clin. Invest. 118, 3453–3461 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Seshan, S. V. et al. Role of tissue factor in a mouse model of thrombotic microangiopathy induced by antiphospholipid antibodies. Blood 114, 1675–1683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Girardi, G., Redecha, P. & Salmon, J. E. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat. Med. 10, 1222–1226 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Martinez de la Torre, Y. et al. Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6. Proc. Natl Acad. Sci. USA 104, 2319–2324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cowchock, F. S., Reece, E. A., Balaban, D., Branch, D. W. & Plouffe, L. Repeated fetal losses associated with antiphospholipid antibodies: a collaborative randomized trial comparing prednisone with low-dose heparin treatment. Am. J. Obstet. Gynecol. 166, 1318–1323 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz-Irastorza, G., Crowther, M., Branch, W. & Khamashta, M. A. Antiphospholipid syndrome. Lancet 376, 1498–1509 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Shamonki, J. M., Salmon, J. E., Hyjek, E. & Baergen, R. N. Excessive complement activation is associated with placental injury in patients with antiphospholipid antibodies. Am. J. Obstet. Gynecol. 196, e1–e5 (2007).

    Article  CAS  Google Scholar 

  48. Cavazzana, I. et al. Complement activation in anti-phospholipid syndrome: a clue for an inflammatory process? J. Autoimmun. 28, 160–164 (2007).

    Article  PubMed  CAS  Google Scholar 

  49. Gerosa, M. et al. Complement involvement in antiphospholipid-mediated placental damage: prospective study in APS pregnant women [abstract THU0120] Ann. Rheum. Dis. 68 (Suppl. 3), 210 (2009).

    Google Scholar 

  50. Martinez de la Torre, Y. et al. Pregnant naïve mice are protected from aPL-induced fetal loss by the injection of a synthetic peptide (TIFI) mimicking the β2GPI PL-binding site [abstract 644]. Arthritis Rheum. 58, S404 (2008).

    Article  Google Scholar 

  51. Francis, J. et al. Impaired expression of endometrial differentiation markers and complement regulatory proteins in patients with recurrent pregnancy loss associated with antiphospholipid syndrome. Mol. Hum. Reprod. 12, 435–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Borghi, M. O. et al. Antiphospholipid antibodies reactivity with human decidual cells: an additional mechanism of pregnancy complications in APS and a potential target for innovative therapeutic intervention [abstract OP-0119]. Ann. Rheum. Dis. 68 (Suppl. 3), 109 (2009).

    Google Scholar 

  53. Di Simone, N. et al. Pathogenic role of anti-β2-glycoprotein I antibodies in antiphospholipid-associated fetal loss: characterisation of β2-glycoprotein I binding to trophoblast cells and functional effects of anti-β2-glycoprotein I antibodies in vitro. Ann. Rheum. Dis. 64, 462–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Ostertag, M. V., Liu, X., Henderson, V. & Pierangeli, S. S. A peptide that mimics the Vth region of β2-glycoprotein I reverses antiphospholipid-mediated thrombosis in mice. Lupus 15, 358–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Tincani, A., Rebaioli, C. B., Andreoli, L., Lojacono, A. & Motta, M. Neonatal effects of maternal antiphospholipid syndrome. Curr. Rheumatol. Rep. 11, 70–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Renaudineau, Y., Dugué, C., Dueymes, M. & Youinou, P. Antiendothelial cell antibodies in systemic lupus erythematosus. Autoimmun. Rev. 1, 365–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Alard, J. E. et al. TLR2 is one of the endothelial receptors for β2-glycoprotein I. J. Immunol. 185, 1550–1557 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Raschi, E. et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood 101, 3495–3500 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Cockrell, E., Espinola, R. G. & McCrae, K. R. Annexin A2: biology and relevance to the antiphospholipid syndrome. Lupus 17, 943–951 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wegrowski, Y. et al. Cell surface proteoglycan expression during maturation of human monocytes-derived dendritic cells and macrophages. Clin. Exp. Immunol. 144, 485–493 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lambrianides, A. et al. Effects of polyclonal IgG derived from patients with different clinical types of the antiphospholipid syndrome on monocyte signaling pathways. J. Immunol. 184, 6622–6628 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Yang, X. V. et al. Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells. Proc. Natl Acad. Sci. USA 106, 274–279 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Zhou, H. et al. Annexin A2 mediates anti-β2 GPI/β2 GPI-induced tissue factor expression on monocytes. Int. J. Mol. Med. 24, 557–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Kaneider, N. C. et al. Expression and function of syndecan-4 in human platelets. Thromb. Haemost. 93, 1120–1127 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Cognasse, F. et al. Evidence of Toll-like receptor molecules on human platelets. Immunol. Cell Biol. 83, 196–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Urbanus, R. T., Pennings, M. T., Derksen, R. H. & de Groot, P. G. Platelet activation by dimeric β2-glycoprotein I requires signaling via both glycoprotein Ibα and apolipoprotein E receptor 2′. J. Thromb. Haemost. 6, 1405–1412 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, C. P., Liu, S. H., Lee, M. Y. & Chen, Y. Y. Heparan sulfate proteoglycans in the basement membranes of the human placenta and decidua. Placenta 4, 309–316 (2008).

    Article  CAS  Google Scholar 

  68. Koga, K. & Mor, G. Toll-like receptors at the maternal-fetal interface in normal pregnancy and pregnancy disorders. Am. J. Reprod. Immunol. 63, 587–600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mulla, M. J. et al. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am. J. Reprod. Immunol. 62, 96–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoang, V. M. et al. Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 40, 4077–4086 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Abaskharoun, M., Bellemare, M., Lau, E. & Margolis, R. U. Glypican-1, phosphacan/receptor protein-tyrosine phosphatase-ζ/β and its ligand, tenascin-C, are expressed by neural stem cells and neural cells derived from embryonic stem cells. ASN Neuro. 2, e00039 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tang, S. C. et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl Acad. Sci. USA 104, 13798–13803 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Myant, N. B. Reelin and apolipoprotein E receptor 2 in the embryonic and mature brain: effects of an evolutionary change in the apoER2 gene. Proc. Biol. Sci. 277, 345–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Chua, C. C., Rahimi, N., Forsten-Williams, K. & Nugent, M. A. Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ. Res. 94, 316–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Satta, N. et al. The role of TLR2 in the inflammatory activation of mouse fibroblasts by human antiphospholipid antibodies. Blood 109, 1507–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Romay-Penabad, Z. et al. Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo. Blood 114, 3074–3083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Raschi, E., Broggini, V., Borghi, M. O., Grossi, C. & Meroni, P. L. TLR-4 and Annexin A2 involvement in endothelial cell activation by anti-phospholipid antibodies: specific silencing by small interfering RNAs [abstract 1356]. Arthritis Rheum. 62 (Suppl.), S563 (2010).

    Google Scholar 

  78. Zhang, J. & McCrae, K. R. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-β2 glycoprotein I antibodies. Blood 105, 1964–1969 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Shoenfeld, Y. et al. Prevalence and clinical correlations of antibodies against six β2-glycoprotein-I-related peptides in the antiphospholipid syndrome. J. Clin. Immunol. 23, 377–383 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. de Laat, B. et al. The association between circulating antibodies against domain I of β2-glycoprotein I and thrombosis: an international multicenter study. J. Thromb. Haemost. 7, 1767–1773 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Ioannou, Y. & Rahman, A. Domain I of β2-glycoprotein I: its role as an epitope and the potential to be developed as a specific target for the treatment of the antiphospholipid syndrome. Lupus 19, 400–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Ioannou, Y. et al. In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of β2-glycoprotein I: proof of concept. J. Thromb. Haemost. 7, 833–842 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Shoenfeld, Y. et al. Infectious origin of the antiphospholipid syndrome. Ann. Rheum. Dis. 65, 2–6 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Agar, C. et al. β2-Glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood 116, 1336–1343 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Tedesco, F. Biodistribution of β2GPI in naive and immunized mice and in vivo pro-thrombotic effect of an anti-β2GPI minibody isolated from human phage display library [abstract A006]. Lupus 19, 497–498 (2010).

    Google Scholar 

  86. McIntyre, J. A., Wagenknecht, D. R. & Sugi, T. Phospholipid binding plasma proteins required for antiphospholipid antibody detection—an overview. Am. J. Reprod. Immunol. 37, 101–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. La Rosa, L. et al. β2 Glycoprotein I and placental anticoagulant protein I in placentae from patients with antiphospholipid syndrome. J. Rheumatol. 21, 1684–1693 (1994).

    CAS  PubMed  Google Scholar 

  88. Pierangeli, S. S. et al. Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum. 52, 2120–2124 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Munakata, Y. et al. Detection of complement-fixing antiphospholipid antibodies in association with thrombosis. Thromb. Haemost. 83, 728–731 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Oku, K. et al. Complement activation in patients with primary antiphospholipid syndrome. Ann. Rheum. Dis. 68, 1030–1035 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Ziglioli, T. et al. Low complement levels during pregnancy are associated with obstetric complications in patients with primary antiphospholipid syndrome [abstract THU0129]. Ann. Rheum. Dis. 68 (Suppl. 3), 213–214 (2009).

    Google Scholar 

  92. Tedesco, F. et al. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J. Exp. Med. 185, 1619–1627 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Girardi, G. Role of tissue factor in the maternal immunological attack of the embryo in the antiphospholipid syndrome. Clin. Rev. Allergy Immunol. 39, 160–165 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data, discussing content and writing the article, and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Pier Luigi Meroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meroni, P., Borghi, M., Raschi, E. et al. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol 7, 330–339 (2011). https://doi.org/10.1038/nrrheum.2011.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing