Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MRI-based semiquantitative scoring of joint pathology in osteoarthritis

Abstract

The use of MRI techniques to investigate tissue pathology has become increasingly widespread in osteoarthritis (OA) research. Semiquantitative assessment of the joints by expert interpreters of MRI data is a powerful tool that can increase our understanding of the natural history of this complex disease. Several reliable and validated semiquantitative scoring systems now exist and have been applied to large-scale, multicentre, cross-sectional and longitudinal observational epidemiological studies. Such approaches have advanced our understanding of the associations of different tissue pathologies with pain and improved the definition of joint alterations that lead to disease progression. Semiquantitative MRI outcome measures have also been applied in several clinical trials in OA. Indeed, interest in MRI-based semiquantitative scoring systems has led to the development of several novel scoring systems that can be applied to different joints: a knee synovitis scoring system based on contrast-enhanced MRI; the MRI Osteoarthritis Knee Score (MOAKS); the Hip Osteoarthritis MRI Score (HOAMS); and the Oslo Hand Osteoarthritis MRI score (OHOA-MRI). Although these new scoring systems offer theoretical advantages over pre-existing systems, whether they offer actual superiority with regard to reliability, responsiveness and validity remains to be seen.

Key Points

  • MRI-based semiquantitative scoring systems are available for osteoarthritis (OA) for the knee, hip, hand, spine and shoulder

  • Currently several scoring systems are available for the assessment of knee OA each of which have advantages and disadvantages

  • For assessment of synovitis, semiquantitative scoring using the results of contrast-enhanced MRI enables more accurate evaluation than scoring of non-enhanced MRI data

  • Semiquantitative MRI-based assessments have enabled identification of tissue pathologies that are relevant to important clinical and structural endpoints

  • Assessment of specific pathological features using appropriate MRI pulse sequences is essential for meaningful interpretation of MRI-derived data

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential diagnoses of MRI signal changes suggestive of BMLs.
Figure 2: Semiquantative MRI assessment of BMLs.
Figure 3: Semiquantitative MRI assessment of cartilage.
Figure 4: Comparison of IwFS sequences and DESS sequences for the detection of a meniscal tear using MRI.
Figure 5: MRI susceptibility artefacts due to intra-articular vacuum phenomenon.
Figure 6: Anatomical subregions used in WORMS, MOAKS and BLOKS semiquantitative scoring systems for knee OA.
Figure 7: Schematic illustration of how cartilage loss is scored using MRI data in BLOKS, MOAKS and WORMS.
Figure 8: Spontaneous healing of a focal cartilage defect observed using MRI.
Figure 9: Analysis of hip OA using MRI.

Similar content being viewed by others

References

  1. Hunter, D. J. et al. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage 19, 557–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hunter, D. J. et al. Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence. Osteoarthritis Cartilage 19, 589–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hayashi, D., Roemer, F. W. & Guermazi, A. Osteoarthritis year 2011 in review: imaging in OA—a radiologists' perspective. Osteoarthritis Cartilage 20, 207–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Roemer, F. W. & Guermazi, A. Osteoarthritis year 2012 in review: imaging. Osteoarthritis Cartilage 20, 1440–1446 (2012).

    Article  PubMed  Google Scholar 

  5. Conaghan, P. G., Hunter, D. J., Maillefert, J. F., Reichmann, W. M. & Losina, E. Summary and recommendations of the OARSI FDA osteoarthritis Assessment of Structural Change Working Group. Osteoarthritis Cartilage 19, 606–610 (2011).

    Article  CAS  Google Scholar 

  6. Kemp, M. A., Lang, K., Dahill, M. & Williams, J. L. Investigating meniscal symptoms in patients with knee osteoarthritis—is MRI an unnecessary investigation? Knee 18, 252–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Guermazi, A. et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 345, e5339 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hunter, D. J. et al. Change in joint space width: hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum. 54, 2488–2495 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Felson, D. T. et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. 56, 2986–2992 (2007).

    Article  PubMed  Google Scholar 

  10. Felson, D. T. et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann. Intern. Med. 134, 541–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Guermazi, A. et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann. Rheum. Dis. 70, 805–811 (2011).

    Article  PubMed  Google Scholar 

  12. Baker, K. et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann. Rheum. Dis. 69, 1779–1783 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Eckstein, F. et al. One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann. Rheum. Dis. 68, 674–679 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y. et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 63, 691–699 (2011).

    Article  PubMed  Google Scholar 

  15. Englund, M. et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann. Rheum. Dis. 69, 1796–1802 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roemer, F. W. et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann. Rheum. Dis. 70, 1804–1809 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sharma, L. et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum. 58, 1716–1726 (2008).

    Article  PubMed  Google Scholar 

  18. Kellgren, J. H. & Lawrence, J. S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494–502 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Altman, R. D., Hochberg, M., Murphy, W. A., Wolfe, F. & Lequesne, M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage 3, 3–70 (1995).

    PubMed  Google Scholar 

  20. Altman, R. D. & Gold, G. E. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage 15 (Suppl. A), A1–A56 (2007).

    Article  PubMed  Google Scholar 

  21. Peterfy, C. G. et al. Whole-organ evaluation of the knee in osteoarthritis using MRI [abstract]. Ann. Rheum. Dis. 38 (Suppl.), S342 (1999).

    Google Scholar 

  22. Peterfy, C. G. et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12, 177–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi, D. et al. Longitudinal assessment of cyst-like lesions of the knee and their relation to radiographic osteoarthritis and MRI-detected effusion and synovitis in patients with knee pain. Arthritis Res. Ther. 12, R172 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roemer, F. W. et al. Prevalence of magnetic resonance imaging-defined atrophic and hypertrophic phenotypes of knee osteoarthritis in a population-based cohort. Arthritis Rheum. 64, 429–437 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guermazi, A. et al. Cyst-like lesions of the knee joint and their relation to incident knee pain and development of radiographic osteoarthritis: the MOST study. Osteoarthritis Cartilage 18, 1386–1392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roemer, F. W. et al. A comparison of dedicated 1.0 T extremity MRI vs large-bore 1.5 T MRI for semiquantitative whole organ assessment of osteoarthritis: the MOST study. Osteoarthritis Cartilage 18, 168–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Hernandez-Molina, G. et al. Central bone marrow lesions in symptomatic knee osteoarthritis and their relationship to anterior cruciate ligament tears and cartilage loss. Arthritis Rheum. 58, 130–136 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Reichenbach, S. et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage 16, 1005–1010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neogi, T. et al. Subchondral bone attrition may be a reflection of compartment-specific mechanical load: the MOST Study. Ann. Rheum. Dis. 69, 841–844 (2010).

    Article  PubMed  Google Scholar 

  30. Wildi, L. M. et al. Relationship between bone marrow lesions, cartilage loss and pain in knee osteoarthritis: results from a randomised controlled clinical trial using MRI. Ann. Rheum. Dis. 69, 2118–2124 (2010).

    Article  PubMed  Google Scholar 

  31. Kornaat, P. R. et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 34, 95–102 (2005).

    Article  PubMed  Google Scholar 

  32. Hunter, D. J. et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann. Rheum. Dis. 67, 206–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hunter, D. J. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19, 990–1002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meredith, D. S. et al. Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using magnetic resonance imaging. BMC Musculoskelet. Disord. 10, 133 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rhodes, L. A. et al. The validation of simple scoring methods for evaluating compartment-specific synovitis detected by MRI in knee osteoarthritis. Rheumatology (Oxford) 44, 1569–1573 (2005).

    Article  CAS  Google Scholar 

  36. Loeuille, D. et al. Comparing non-enhanced and enhanced sequences in the assessment of effusion and synovitis in knee OA: associations with clinical, macroscopic and microscopic features. Osteoarthritis Cartilage 19, 1433–1439 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Loeuille, D. et al. Magnetic resonance imaging in osteoarthritis: which method best reflects synovial membrane inflammation? Correlations with clinical, macroscopic and microscopic features. Osteoarthritis Cartilage 17, 1186–1192 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Loeuille, D. et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum. 52, 3492–3501 (2005).

    Article  PubMed  Google Scholar 

  39. Hayashi, D. et al. Imaging of synovitis in osteoarthritis: current status and outlook. Semin. Arthritis Rheum. 41, 116–130 (2011).

    Article  PubMed  Google Scholar 

  40. Haugen, I. K. et al. Hand osteoarthritis and MRI: development and first validation step of the proposed Oslo Hand Osteoarthritis MRI score. Ann. Rheum. Dis. 70, 1033–1038 (2011).

    Article  PubMed  Google Scholar 

  41. Roemer, F. W. et al. Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage 19, 946–962 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Keen, H. I. et al. The development of a preliminary ultrasonographic scoring system for features of hand osteoarthritis. Ann. Rheum. Dis. 67, 651–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Lo, G. H. et al. Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage 17, 1562–1569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hunter, D. J. et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 54, 1529–1535 (2006).

    Article  PubMed  Google Scholar 

  45. Wirth, W. et al. Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort. Osteoarthritis Cartilage 17, 291–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Laslett, L. L. et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann. Rheum. Dis. 71, 1322–1328 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Bowers, M. E., Tung, G. A., Fleming, B. C., Crisco, J. J. & Rey, J. Quantification of meniscal volume by segmentation of 3T magnetic resonance images. J. Biomech. 40, 2811–2815 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Habib, S. et al. MRI-based volumetric assessment of joint effusion in knee osteoarthritis using proton density-weighted fat-suppressed and T1-weighted contrast-enhanced fat-suppressed sequences. Skeletal Radiol. 40, 1581–1585 (2011).

    Article  PubMed  Google Scholar 

  49. Eckstein, F., Guermazi, A. & Roemer, F. W. Quantitative MR imaging of cartilage and trabecular bone in osteoarthritis. Radiol. Clin. North Am. 47, 655–673 (2009).

    Article  PubMed  Google Scholar 

  50. Sakamoto, F. A., Winalski, C. S., Schils, J. P., Parker, R. D. & Polster, J. M. Vacuum phenomenon: prevalence and appearance in the knee with 3 T magnetic resonance imaging. Skeletal Radiol. 40, 1275–1285 (2011).

    Article  PubMed  Google Scholar 

  51. Hayashi, D. et al. Semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts of the knee at 3T MRI: a comparison between intermediate-weighted fat-suppressed spin echo and Dual Echo Steady State sequences. BMC Musculoskelet. Disord. 12, 198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu, L., Hayashi, D., Roemer, F. W., Felson, D. T. & Guermazi, A. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin. Arthritis Rheum. 42, 105–118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Roemer, F. W. et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage 17, 1115–1131 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Stahl, R. et al. Osteoarthritis of the knee at 3.0 T: comparison of a quantitative and a semi-quantitative score for the assessment of the extent of cartilage lesion and bone marrow edema pattern in a 24-month longitudinal study. Skeletal Radiol. 40, 1315–1327 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roemer, F. W. et al. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann. Rheum. Dis. 68, 1461–1465 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Roemer, F. W. et al. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology 252, 772–780 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Roemer, F. W. et al. Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral joint—the MOST Study. Osteoarthritis Cartilage 20, 1391–1398 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Burstein, D., Gray, M., Mosher, T. & Dardzinski, B. Measures of molecular composition and structure in osteoarthritis. Radiol. Clin. North Am. 47, 675–686 (2009).

    Article  PubMed  Google Scholar 

  59. Peterfy, C. G. et al. MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis Cartilage 14 (Suppl. A), A95–A111 (2006).

    Article  PubMed  Google Scholar 

  60. Roemer, F. W. et al. Short tau inversion recovery and proton density-weighted fat suppressed sequences for the evaluation of osteoarthritis of the knee with a 1.0 T dedicated extremity MRI: development of a time-efficient sequence protocol. Eur. Radiol. 15, 978–987 (2005).

    Article  PubMed  Google Scholar 

  61. Tanamas, S. K. et al. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology (Oxford) 49, 2413–2419 (2010).

    Article  Google Scholar 

  62. Crema, M. D., Roemer, F. W., Hayashi, D. & Guermazi, A. Comment on: Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology (Oxford) 50, 996–997; author reply 997–999 (2011).

    Article  Google Scholar 

  63. Kijowski, R. et al. Vastly undersampled isotropic projection steady-state free precession imaging of the knee: diagnostic performance compared with conventional MR. Radiology 251, 185–194 (2009).

    Article  PubMed  Google Scholar 

  64. Kijowski, R. et al. 3.0-T evaluation of knee cartilage by using three-dimensional IDEAL GRASS imaging: comparison with fast spin-echo imaging. Radiology 255, 117–127 (2010).

    Article  PubMed  Google Scholar 

  65. Roemer, F. W. et al. Semiquantitative assessment of focal cartilage damage at 3T MRI: a comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences. Eur. J. Radiol. 80, e126–e131 (2011).

    Article  PubMed  Google Scholar 

  66. Hayashi, D., Roemer, F. W. & Guermazi, A. Choice of pulse sequences for MRI-based semiquantitative assessment of cartilage defects in osteoarthritis research: comment on the article by Dore et al. Arthritis Rheum. 62, 3830–3831; author reply 3831–3832 (2010).

    Article  PubMed  Google Scholar 

  67. Peterfy, C. G., Schneider, E. & Nevitt, M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16, 1433–1441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hunter, D. J. et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum. 54, 795–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Stehling, C. et al. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartilage 18, 776–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eckstein, F., Wirth, W. & Nevitt, M. C. Recent advances in osteoarthritis imaging—the Osteoarthritis Initiative. Nat. Rev. Rheumatol. 8, 622–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Felson, D. T. et al. Comparison of BLOKS and WORMS scoring systems part II. Longitudinal assessment of knee MRIs for osteoarthritis and suggested approach based on their performance: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 18, 1402–1407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lynch, J. A. et al. Comparison of BLOKS and WORMS scoring systems part I. Cross sectional comparison of methods to assess cartilage morphology, meniscal damage and bone marrow lesions on knee MRI: data from the osteoarthritis initiative. Osteoarthritis Cartilage 18, 1393–1401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Katz, J. N. et al. The MeTeOR Trial (Meniscal Tear in Osteoarthritis Research): rationale and design features. Contemp. Clin. Trials 33, 1189–1196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. The Pivotal Osteoarthritis Initiative Magnetic Resonance Imaging Analysis (POMA) [online], (2010).

  75. Outerbridge, R. E. The etiology of chondromalacia patellae. J. Bone Joint Surg. Br. 43-B, 752–757 (1961).

    Article  CAS  PubMed  Google Scholar 

  76. Noyes, F. R. & Stabler, C. L. A system for grading articular cartilage lesions at arthroscopy. Am. J. Sports Med. 17, 505–513 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Drape, J. L. et al. Quantitative MR imaging evaluation of chondropathy in osteoarthritic knees. Radiology 208, 49–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Duc, S. R. et al. Diagnosis of articular cartilage abnormalities of the knee: prospective clinical evaluation of a 3D water-excitation true FISP sequence. Radiology 243, 475–482 (2007).

    Article  PubMed  Google Scholar 

  79. Disler, D. G., McCauley, T. R., Wirth, C. R. & Fuchs, M. D. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am. J. Roentgenol. 165, 377–382 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Ding, C. et al. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartilage 13, 198–205 (2005).

    Article  PubMed  Google Scholar 

  81. Sonin, A. H., Pensy, R. A., Mulligan, M. E. & Hatem, S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am. J. Roentgenol. 179, 1159–1166 (2002).

    Article  PubMed  Google Scholar 

  82. Biswal, S. et al. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 46, 2884–2892 (2002).

    Article  PubMed  Google Scholar 

  83. Fernandez-Madrid, F. et al. Synovial thickening detected by MR imaging in osteoarthritis of the knee confirmed by biopsy as synovitis. Magn. Reson. Imaging 13, 177–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Roemer, F. W. et al. Hoffa's fat pad: evaluation on unenhanced MR images as a measure of patellofemoral synovitis in osteoarthritis. AJR Am. J. Roentgenol. 192, 1696–1700 (2009).

    Article  PubMed  Google Scholar 

  85. Saddik, D., McNally, E. G. & Richardson, M. MRI of Hoffa's fat pad. Skeletal Radiol. 33, 433–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Pelletier, J. P. et al. A new non-invasive method to assess synovitis severity in relation to symptoms and cartilage volume loss in knee osteoarthritis patients using MRI. Osteoarthritis Cartilage 16 (Suppl. 3), S8–S13 (2008).

    Article  PubMed  Google Scholar 

  87. Baker, K. R. et al. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study. Osteoarthritis Cartilage 20, 382–387 (2011).

    Article  Google Scholar 

  88. Guermazi, A. et al. Whole-knee synovitis semiquantitatively assessed on T1-weighted contrast-enhanced MRI is associated with radiographic tibiofemoral osteoarthritis and severe meniscal damage: the MOST Study [abstract 402]. Osteoarthritis Cartilage 17 (Suppl. 1), S211–S212 (2009).

    Article  Google Scholar 

  89. Pham, X. V. et al. Magnetic resonance imaging changes in periarticular soft tissues during flares of medial compartment knee osteoarthritis. Preliminary study in 10 patients. Rev. Rhum. Engl. Ed. 66, 398–403 (1999).

    CAS  PubMed  Google Scholar 

  90. Bergin, D. et al. Atraumatic medial collateral ligament oedema in medial compartment knee osteoarthritis. Skeletal Radiol. 31, 14–18 (2002).

    Article  PubMed  Google Scholar 

  91. Stein, V. et al. Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears. Rheumatol. Int. 32, 1197–1208 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Crema, M. D. et al. The association of magnetic resonance imaging (MRI)-detected structural pathology of the knee with crepitus in a population-based cohort with knee pain: the MoDEKO study. Osteoarthritis Cartilage 19, 1429–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Felson, D. T. et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann. Intern. Med. 139, 330–336 (2003).

    Article  PubMed  Google Scholar 

  94. Wang, Y. et al. Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. Rheumatology (Oxford) 49, 997–1004 (2010).

    Article  Google Scholar 

  95. Dore, D. et al. Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res. Ther. 12, R222 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brem, M. H. et al. Longitudinal evaluation of the occurrence of MRI-detectable bone marrow edema in osteoarthritis of the knee. Acta Radiol. 49, 1031–1037 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Berthiaume, M. J. et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann. Rheum. Dis. 64, 556–563 (2005).

    Article  PubMed  Google Scholar 

  98. Yusuf, E., Kortekaas, M. C., Watt, I., Huizinga, T. W. & Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis. 70, 60–67 (2011).

    Article  PubMed  Google Scholar 

  99. Ip, S. et al. Frequency of bone marrow lesions and association with pain severity: results from a population-based symptomatic knee cohort. J. Rheumatol. 38, 1079–1085 (2011).

    Article  PubMed  Google Scholar 

  100. Hill, C. L. et al. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann. Rheum. Dis. 66, 1599–1603 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Laberge, M. A. et al. Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle-aged subjects—data from the Osteoarthritis Initiative. Skeletal Radiol. 41, 633–641 (2012).

    Article  PubMed  Google Scholar 

  102. Crema, M. D. et al. The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period. Osteoarthritis Cartilage 18, 336–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Roemer, F. W. et al. Risk factors for magnetic resonance imaging-detected patellofemoral and tibiofemoral cartilage loss during a six-month period: the joints on glucosamine study. Arthritis Rheum. 64, 1888–1898 (2012).

    Article  PubMed  Google Scholar 

  104. Wluka, A. E., Ding, C., Jones, G. & Cicuttini, F. M. The clinical correlates of articular cartilage defects in symptomatic knee osteoarthritis: a prospective study. Rheumatology (Oxford) 44, 1311–1316 (2005).

    Article  CAS  Google Scholar 

  105. Ding, C., Cicuttini, F., Scott, F., Boon, C. & Jones, G. Association of prevalent and incident knee cartilage defects with loss of tibial and patellar cartilage: a longitudinal study. Arthritis Rheum. 52, 3918–3927 (2005).

    Article  PubMed  Google Scholar 

  106. Kothari, A. et al. Within-subregion relationship between bone marrow lesions and subsequent cartilage loss in knee osteoarthritis. Arthritis Care Res. (Hoboken) 62, 198–203 (2010).

    Google Scholar 

  107. Intema, F. et al. Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study. Ann. Rheum. Dis. 70, 1441–1446 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Stefanik, J. J. et al. Association between patella alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: the multicenter osteoarthritis study. Arthritis Care Res. (Hoboken) 62, 1258–1265 (2010).

    Article  CAS  Google Scholar 

  109. Davies-Tuck, M. L. et al. Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women—a prospective cohort study. Arthritis Res. Ther. 11, R181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hayashi, D., Guermazi, A. & Hunter, D. J. Osteoarthritis year 2010 in review: imaging. Osteoarthritis Cartilage 19, 354–360 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Guermazi, A., Roemer, F. W. & Hayashi, D. Imaging of osteoarthritis: update from a radiological perspective. Curr. Opin. Rheumatol. 23, 484–491 (2011).

    Article  PubMed  Google Scholar 

  112. Wildi, L. M. et al. Chondroitin sulphate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomised, double-blind, placebo-controlled pilot study using MRI. Ann. Rheum. Dis. 70, 982–989 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bennell, K. L. et al. Lateral wedge insoles for medial knee osteoarthritis: 12 month randomised controlled trial. BMJ 342, d2912 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang, Y. et al. Effects of Hylan G-F 20 supplementation on cartilage preservation detected by magnetic resonance imaging in osteoarthritis of the knee: a two-year single-blind clinical trial. BMC Musculoskelet. Disord. 12, 195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Friedrich, K. M. et al. The prevalence of lumbar facet joint edema in patients with low back pain. Skeletal Radiol. 36, 755–760 (2007).

    Article  PubMed  Google Scholar 

  116. Pfirrmann, C. W., Metzdorf, A., Zanetti, M., Hodler, J. & Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26, 1873–1878 (2001).

    Article  CAS  Google Scholar 

  117. Pfirrmann, C. W. et al. MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology 230, 583–588 (2004).

    Article  PubMed  Google Scholar 

  118. Griffith, J. F. et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 32, E708–E712 (2007).

    Article  Google Scholar 

  119. de Abreu, M. R., Chung, C. B., Wesselly, M., Jin-Kim, H. & Resnick, D. Acromioclavicular joint osteoarthritis: comparison of findings derived from MR imaging and conventional radiography. Clin. Imaging 29, 273–277 (2005).

    Article  PubMed  Google Scholar 

  120. Haugen, I. K. et al. Comparison of features by MRI and radiographs of the interphalangeal finger joints in patients with hand osteoarthritis. Ann. Rheum. Dis. 71, 345–350 (2012).

    Article  PubMed  Google Scholar 

  121. Haugen, I. K. et al. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarthritis. Ann. Rheum. Dis. 71, 899–904 (2012).

    Article  PubMed  Google Scholar 

  122. Feydy, A., Pluot, E., Guerini, H. & Drape, J. L. Osteoarthritis of the wrist and hand, and spine. Radiol. Clin. North Am. 47, 723–759 (2009).

    Article  PubMed  Google Scholar 

  123. Pathria, M., Sartoris, D. J. & Resnick, D. Osteoarthritis of the facet joints: accuracy of oblique radiographic assessment. Radiology 164, 227–230 (1987).

    Article  CAS  PubMed  Google Scholar 

  124. Li, J., Muehleman, C., Abe, Y. & Masuda, K. Prevalence of facet joint degeneration in association with intervertebral joint degeneration in a sample of organ donors. J. Orthop. Res. 29, 1267–1274 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Thompson, J. P. et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976) 15, 411–415 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to each stage of the preparation of this manuscript.

Corresponding author

Correspondence to Ali Guermazi.

Ethics declarations

Competing interests

A. Guermazi, F. W. Roemer and M. D. Crema declare that they are stock holders with Boston Imaging Core Lab. A. Guermazi is also a consultant to AstraZeneca, Genzyme, Merck Serano, Novartis and Stryker, and F. W. Roemer is a consultant to Merck Serono and the NIH. I. K. Haugen and D. Hayashi declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guermazi, A., Roemer, F., Haugen, I. et al. MRI-based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev Rheumatol 9, 236–251 (2013). https://doi.org/10.1038/nrrheum.2012.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing