Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a mechanism-based approach to pain management in osteoarthritis

Key Points

  • Current evidence supports the idea that osteoarthritis (OA) pain is generated and maintained through continuous nociceptive input from the joint

  • Chronic OA pain is associated with changes in the central nervous system (CNS); these changes are reversible, reflecting the plasticity of the CNS and the requirement for continuous input from the periphery

  • Antibodies to nerve growth factor, which do not cross the blood–brain barrier and therefore act entirely through effects in the periphery, are effective at relieving OA pain

  • OA pain pathways can also respond to modulation centrally, as exemplified by data from OA pain trials with duloxetine, thus offering opportunity for the identification of new targets for pain relief

  • Heterogeneity in the clinical presentation of OA pain and in the response to analgesic therapies suggests that, in the future, distinct mechanism-based therapeutic approaches could be tailored to specific subsets of patients

Abstract

Pain is the defining symptom of osteoarthritis (OA), yet available treatment options, of which NSAIDs are the most common, provide inadequate pain relief and are associated with serious health risks when used long term. Chronic pain pathways are subject to complex levels of control and modulation, both in the periphery and in the central nervous system. Ongoing clinical and basic research is uncovering how these pathways operate in OA. Indeed, clinical investigation into the types of pain associated with progressive OA, the presence of central sensitization, the correlation with structural changes in the joint, and the efficacy of novel analgesics affords new insights into the pathophysiology of OA pain. Moreover, studies in disease-specific animal models enable the unravelling of the cellular and molecular pathways involved. We expect that increased understanding of the mechanisms by which chronic OA-associated pain is generated and maintained will offer opportunities for targeting and improving the safety of analgesia. In addition, using clinical and genetic approaches, it might become possible to identify subsets of patients with pain of different pathophysiology, thus enabling a tailored approach to pain management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuroanatomy of the pain pathway and analgesic targets in OA.

Similar content being viewed by others

References

  1. Hing, E., Cherry, D. K. & Woodwell, D. A. National Ambulatory Medical Care Survey: 2004 summary. Advance Data 374, 1–33 (2006).

    Google Scholar 

  2. Hawker, G. A. et al. Differences between men and women in the rate of use of hip and knee arthroplasty. N. Engl. J. Med. 342, 1016–1022 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, W. et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: Changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 18, 476–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Doherty, M. & Dieppe, P. The “placebo” response in osteoarthritis and its implications for clinical practice. Osteoarthritis Cartilage 17, 1255–1262 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Wolfe, M. M., Lichtenstein, D. R. & Singh, G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 340, 1888–1899 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kearney, P. M. et al. Do selective cyclooxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 332, 1302–1308 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furlan, A. D., Sandoval, J. A., Mailis-Gagnon, A. & Tunks, E. Opioids for chronic noncancer pain: a meta-analysis of effectiveness and side effects. CMAJ 174, 1589–1594 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Le Graverand-Gastineau, M. Disease modifying osteoarthritis drugs: facing development challenges and choosing molecular targets. Curr. Drug Targets 11, 528–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Stahl, S. M., Grady, M. M., Moret, C. & Briley, M. SNRIs: their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr. 10, 732–747 (2005).

    Article  PubMed  Google Scholar 

  10. Lane, N. E. et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med. 363, 1521–1531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Felson, D. T. Developments in the clinical understanding of osteoarthritis. Arthritis Res. Ther. 11, 203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hawker, G. A. et al. Understanding the pain experience in hip and knee osteoarthritis—an OARSI/OMERACT initiative. Osteoarthritis Cartilage 16, 415–422 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Hochman, J. R., French, M. R., Bermingham, S. L. & Hawker, G. A. The nerve of osteoarthritis pain. Arthritis Care Res. 62, 1019–1023 (2010).

    Article  Google Scholar 

  14. Hochman, J. R., Gagliese, L., Davis, A. M. & Hawker, G. A. Neuropathic pain symptoms in a community knee OA cohort. Osteoarthritis Cartilage 19, 647–654 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Hawker, G. A. Experiencing painful osteoarthritis: what have we learned from listening? Curr. Opin. Rheumatol. 21, 507–512 (2009).

    Article  PubMed  Google Scholar 

  16. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).

    Article  PubMed  Google Scholar 

  17. Suokas, A. K. et al. Quantitative sensory testing in painful osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 20, 1075–1085 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, L. Proprioceptive impairment in knee osteoarthritis. Rheum. Dis. Clin. North Am. 25, 299–314 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Felson, D. T. et al. The effects of impaired joint position sense on the development and progression of pain and structural damage in knee osteoarthritis. Arthritis Rheum. 61, 1070–1076 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shakoor, N., Agrawal, A. & Block, J. A. Reduced lower extremity vibratory perception in osteoarthritis of the knee. Arthritis Rheum. 59, 117–121 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shakoor, N., Lee, K. J., Fogg, L. F. & Block, J. A. Generalized vibratory deficits in osteoarthritis of the hip. Arthritis Rheum. 59, 1237–1240 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. International Association for the Study of Pain. IASP [online].

  23. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McDougall, J. J. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Res. Ther. 8, 220 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hines, A. E., Birn, H., Teglbjaerg, P. S. & Sinkjaer, T. Fiber type composition of articular branches of the tibial nerve at the knee joint in man. Anat. Rec. 246, 573–578 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Freeman, M. A. & Wyke, B. The innervation of the knee joint. An anatomical and histological study in the cat. J. Anat. 101, 505–532 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hukkanen, M. et al. Innervation of bone from healthy and arthritic rats by substance P and calcitonin gene related peptide containing sensory fibers. J. Rheum. 19, 1252–1259 (1992).

    CAS  PubMed  Google Scholar 

  28. Nixon, A. J. & Cummings, J. F. Substance P immunohistochemical study of the sensory innervation of normal subchondral bone in the equine metacarpophalangeal joint. Am. J. Vet. Res. 55, 28–33 (1994).

    CAS  PubMed  Google Scholar 

  29. McDougall, J. J., Bray, R. C. & Sharkey, K. A. Morphological and immunohistochemical examination of nerves in normal and injured collateral ligaments of rat, rabbit, and human knee joints. Anat. Rec. 248, 29–39 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Creamer, P., Hunt, M. & Dieppe, P. Pain mechanisms in osteoarthritis of the knee: effect of intraarticular anesthetic. J. Rheum. 23, 1031–1036 (1996).

    CAS  PubMed  Google Scholar 

  31. Dye, S. F., Vaupel, G. L. & Dye, C. C. Conscious neurosensory mapping of the internal structures of the human knee without intraarticular anesthesia. Am. J. Sports Med. 26, 773–777 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Hannan, M. T., Felson, D. T. & Pincus, T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheum. 27, 1513–1517 (2000).

    CAS  PubMed  Google Scholar 

  33. Bedson, J. & Croft, P. R. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet. Disord. 9, 116 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dieppe, P. A. & Lohmander, L. S. Pathogenesis and management of pain in osteoarthritis. Lancet 365, 965–973 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Duncan, R. et al. Symptoms and radiographic osteoarthritis: not as discordant as they are made out to be? Ann. Rheum. Dis. 66, 86–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Neogi, T. et al. Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies. BMJ 339, b2844 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Eckstein, F. et al. Greater rates of cartilage loss in painful knees than in pain-free knees after adjustment for radiographic disease stage: data from the osteoarthritis initiative. Arthritis Rheum. 63, 2257–2267 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Felson, D. T. Imaging abnormalities that correlate with joint pain. Br. J. Sports Med. 45, 289–291 (2011).

    Article  PubMed  Google Scholar 

  39. Yusuf, E., Kortekaas, M. C., Watt, I., Huizinga, T. W. & Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis. 70, 60–67 (2011).

    Article  PubMed  Google Scholar 

  40. Zhang, Y. et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 63, 691–699 (2011).

    Article  PubMed  Google Scholar 

  41. Laslett, L. L. et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann. Rheum. Dis. 71, 1322–1328 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Scanzello, C. R. et al. Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum. 63, 391–400 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Heppelmann, B. & McDougall, J. J. Inhibitory effect of amiloride and gadolinium on fine afferent nerves in the rat knee: evidence of mechanogated ion channels in joints. Exp. Brain Res. 167, 114–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Little, C. B. & Zaki, S. What constitutes an “animal model of osteoarthritis”—the need for consensus? Osteoarthritis Cartilage 20, 261–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Schuelert, N. & McDougall, J. J. Involvement of Nav 1.8 sodium ion channels in the transduction of mechanical pain in a rodent model of osteoarthritis. Arthritis Res. Ther. 14, R5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akopian, A. N., Sivilotti, L. & Wood, J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Raouf, R. et al. Sodium channels and mammalian sensory mechanotransduction. Mol. Pain 8, 21 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amaya, F. et al. Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol. Cell. Neurosci. 15, 331–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Strickland, I. T. et al. Changes in the expression of NaV1.7, NaV1.8 and NaV1.9 in a distinct population of dorsal root ganglia innervating the rat knee joint in a model of chronic inflammatory joint pain. Eur. J. Pain 12, 564–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Miller, R. J., Jung, H., Bhangoo, S. K. & White, F. A. Cytokine and chemokine regulation of sensory neuron function. Handb. Exp. Pharmacol. 194, 417–449 (2009).

    Article  CAS  Google Scholar 

  52. Coggeshall, R. E., Hong, K. A., Langford, L. A., Schaible, H. G. & Schmidt, R. F. Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res. 272, 185–188 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Schaible, H. G. & Schmidt, R. F. Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J. Neurophysiol. 54, 1109–1122 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Richter, F. et al. Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis Rheum. 62, 3806–3814 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Brenn, D., Richter, F. & Schaible, H. G. Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum. 56, 351–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Schaible, H. G. et al. The role of proinflammatory cytokines in the generation and maintenance of joint pain. Ann. NY Acad. Sci. 1193, 60–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Richter, F. et al. Interleukin17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin17 receptors in rodents. Arthritis Rheum. 64, 4125–4134 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Woolf, C. J., Safieh-Garabedian, B., Ma, Q. P., Crilly, P. & Winter, J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62, 327–331 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Svensson, P., Cairns, B. E., Wang, K. & Arendt-Nielsen, L. Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia. Pain 104, 241–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Huang, J., Zhang, X. & McNaughton, P. A. Inflammatory pain: the cellular basis of heat hyperalgesia. Curr. Neuropharmacol. 4, 197–206 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ji, R. R., Samad, T. A., Jin, S. X., Schmoll, R. & Woolf, C. J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36, 57–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Chao, M. V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Bullock, E. D. & Johnson, E. M. Jr. Nerve growth factor induces the expression of certain cytokine genes and bcl2 in mast cells. Potential role in survival promotion. J. Biol. Chem. 271, 27500–27508 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Gigante, A. et al. Expression of NGF, Trka and p75 in human cartilage. Eur. J. Histochem. 47, 339–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Iannone, F. et al. Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 TrkA) in human osteoarthritic chondrocytes. Rheumatology 41, 1413–1418 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Barthel, C. et al. Nerve growth factor and receptor expression in rheumatoid arthritis and spondyloarthritis. Arthritis Res. Ther. 11, R82 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Halliday, D. A., Zettler, C., Rush, R. A., Scicchitano, R. & McNeil, J. D. Elevated nerve growth factor levels in the synovial fluid of patients with inflammatory joint disease. Neurochem. Res. 23, 919–922 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Glasson, S. S., Blanchet, T. J. & Morris, E. A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage 15, 1061–1069 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. McNamee, K. E. et al. Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain. Pain 149, 386–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Shelton, D. L., Zeller, J., Ho, W. H., Pons, J. & Rosenthal, A. Nerve growth factor mediates hyperalgesia and cachexia in auto-immune arthritis. Pain 116, 8–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Mapp, P. I. & Walsh, D. A. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol. 8, 390–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Suri, S. & Walsh, D. A. Osteochondral alterations in osteoarthritis. Bone 51, 204–211 (2012).

    Article  PubMed  Google Scholar 

  75. Suri, S. et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis. 66, 1423–1428 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ashraf, S. et al. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann. Rheum. Dis. 70, 523–529 (2011).

    Article  PubMed  Google Scholar 

  77. Acosta, C. & Davies, A. Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons. J. Neurosci. Res. 86, 1077–1086 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, D., You, B., Lim, H. & Lee, S. J. Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury. Mol. Pain 7, 74 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, T., Gao, Y. J. & Ji, R. R. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci. Bull. 28, 131–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scanzello, C. R., Plaas, A. & Crow, M. K. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr. Opin. Rheumatol. 20, 565–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Sokolove, J. & Lepus, C. M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther. Adv. Musculoskelet. Dis. 5, 77–94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ren, K. & Dubner, R. Interactions between the immune and nervous systems in pain. Nat. Med. 16, 1267–1276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miller, R. E. et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc. Natl Acad. Sci. USA 109, 20602–20607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Segond von Banchet, G. et al. Experimental arthritis causes tumor necrosis factor-α-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain 145, 151–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Milligan, E. D. & Watkins, L. R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10, 23–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. O'Driscoll, S. L. & Jayson, M. I. Proceedings: Pain threshold (PT) analysis in patients with osteoarthritis of the hip. Ann. Rheum. Dis. 34, 195–196 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bajaj, P., Graven-Nielsen, T. & Arendt-Nielsen, L. Osteoarthritis and its association with muscle hyperalgesia: an experimental controlled study. Pain 93, 107–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Kosek, E. & Ordeberg, G. Abnormalities of somatosensory perception in patients with painful osteoarthritis normalize following successful treatment. Eur. J. Pain 4, 229–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Finan, P. H. et al. Quantitative sensory tests of central sensitization are associated with discordance between pain and radiographic severity in knee osteoarthritis. Arthritis Rheum. 65, 363–372 (2013).

    Article  PubMed  Google Scholar 

  91. Graven-Nielsen, T., Wodehouse, T., Langford, R. M., Arendt-Nielsen, L. & Kidd, B. L. Normalization of widespread hyperesthesia and facilitated spatial summation of deep-tissue pain in knee osteoarthritis patients after knee replacement. Arthritis Rheum. 64, 2907–2916 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Apkarian, A. V., Baliki, M. N. & Geha, P. Y. Towards a theory of chronic pain. Prog. Neurobiol. 87, 81–97 (2009).

    Article  PubMed  Google Scholar 

  93. Parks, E. L. et al. Brain activity for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain. Eur. J. Pain 15, 843 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Kulkarni, B. et al. Arthritic pain is processed in brain areas concerned with emotions and fear. Arthritis Rheum. 56, 1345–1354 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Apkarian, A. V. Cortical pathophysiology of chronic pain. Novartis Found. Symp. 261, 239–245 (2004).

    PubMed  Google Scholar 

  96. Gwilym, S. E., Filippini, N., Douaud, G., Carr, A. J. & Tracey, I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study. Arthritis Rheum. 62, 2930–2940 (2010).

    Article  PubMed  Google Scholar 

  97. Farmer, M. A., Baliki, M. N. & Apkarian, A. V. A dynamic network perspective of chronic pain. Neurosci. Lett. 520, 197–203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Apkarian, A. V. The brain in chronic pain: clinical implications. Pain Management 1, 577–586 (2011).

    Article  PubMed  Google Scholar 

  99. Baliki, M. N. et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15, 1117–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Millan, M. J. Descending control of pain. Prog. Neurobiol. 66, 355–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Ossipov, M. H., Dussor, G. O. & Porreca, F. Central modulation of pain. J. Clin. Invest. 120, 3779–3787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Davis, M. P. in Research and Development of Opioid-Related Ligands Ch. 3 (eds Ko, M.-C. & Husbands, S. M.) 9–38 (ACS, 2013).

    Book  Google Scholar 

  103. Kosek, E. & Ordeberg, G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain 88, 69–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Arendt-Nielsen, L. et al. Sensitization in patients with painful knee osteoarthritis. Pain 149, 573–581 (2010).

    Article  PubMed  Google Scholar 

  105. Hochberg, M. C. et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 64, 465–474 (2012).

    Article  CAS  Google Scholar 

  106. Pharmacological management of persistent pain in older persons. J. Am. Geriatr. Soc. 57, 1331–1346 (2009).

  107. Jordan, K. M. et al. EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann. Rheum. Dis. 62, 1145–1155 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, W. et al. EULAR evidence based recommendations for the management of hip osteoarthritis: report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 64, 669–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. The National Collaborating Centre for Chronic Conditions. Osteoarthritis: national clinical guideline for care and management in adults. NICE [online], (2008).

  110. Richmond, J. et al. American Academy of Orthopaedic Surgeons clinical practice guideline on the treatment of osteoarthritis (OA) of the knee. J. Bone Joint Surg. Am. 92, 990–993 (2010).

    Article  PubMed  Google Scholar 

  111. Towheed, T., Shea, B., Wells, G. & Hochberg, M. Analgesia and non-aspirin, non-steroidal anti-inflammatory drugs for osteoarthritis of the hip. Cochrane Database Syst. Rev. CD000517 (2000).

  112. Watson, M. C., Brookes, S. T., Kirwan, J. R. & Faulkner, A. Non-aspirin, non-steroidal anti-inflammatory drugs for osteoarthritis of the knee. Cochrane Database Syst. Rev. CD000142 (2000).

  113. McQuay, H. J. & Moore, R. A. Dose-response in direct comparisons of different doses of aspirin, ibuprofen and paracetamol (acetaminophen) in analgesic studies. Br. J. Clin. Pharmacol. 63, 271–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Pham, T. et al. OMERACT-OARSI initiative: Osteoarthritis Research Society International set of responder criteria for osteoarthritis clinical trials revisited. Osteoarthritis Cartilage 12, 389–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Dworkin, R. H. et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J. Pain 9, 105–121 (2008).

    Article  PubMed  Google Scholar 

  116. Dworkin, R. H. et al. Interpreting the clinical importance of group differences in chronic pain clinical trials: IMMPACT recommendations. Pain 146, 238–244 (2009).

    Article  PubMed  Google Scholar 

  117. Osiri, M., Suarez-Almazor, M. E., Wells, G. A., Robinson, V. & Tugwell, P. Number needed to treat (NNT): implication in rheumatology clinical practice. Ann. Rheum. Dis. 62, 316–321 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rostom, A. et al. Prevention of NSAID-related upper gastrointestinal toxicity: a meta-analysis of traditional NSAIDs with gastroprotection and COX2 inhibitors. Drug Healthc. Patient Saf. 1, 47–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Strand, V. Are COX2 inhibitors preferable to non-selective non-steroidal anti-inflammatory drugs in patients with risk of cardiovascular events taking low-dose aspirin? Lancet 370, 2138–2151 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Catella-Lawson, F. et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N. Engl. J. Med. 345, 1809–1817 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Hohlfeld, T., Saxena, A. & Schror, K. High on treatment platelet reactivity against aspirin by non-steroidal anti-inflammatory drugs—pharmacological mechanisms and clinical relevance. Thromb. Haemost. 109, 825–833 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. US Food and Drug Administration. Information for healthcare professionals: concomitant use of ibuprofen and aspirin. FDA [online].

  123. Moncada, S. & Vane, J. R. Mode of action of aspirin-like drugs. Adv. Intern. Med. 24, 1–22 (1979).

    CAS  PubMed  Google Scholar 

  124. Momin, A. & McNaughton, P. A. Regulation of firing frequency in nociceptive neurons by pro-inflammatory mediators. Exp. Brain Res. 196, 45–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Adatia, A., Rainsford, K. D. & Kean, W. F. Osteoarthritis of the knee and hip. Part I: aetiology and pathogenesis as a basis for pharmacotherapy. J. Pharm. Pharmacol. 64, 617–625 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Vardeh, D. et al. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J. Clin. Invest. 119, 287–294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gupta, S., Nihalani, N. & Masand, P. Duloxetine: review of its pharmacology, and therapeutic use in depression and other psychiatric disorders. Ann. Clin. Psychiatry 19, 125–132 (2007).

    Article  PubMed  Google Scholar 

  128. Sultan, A., Gaskell, H., Derry, S. & Moore, R. A. Duloxetine for painful diabetic neuropathy and fibromyalgia pain: systematic review of randomised trials. BMC Neurol. 8, 29 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Lunn, M. P., Hughes, R. A. & Wiffen, P. J. Duloxetine for treating painful neuropathy or chronic pain. Cochrane Database Syst. Rev. CD007115 (2009).

  130. Chappell, A. S. et al. Duloxetine, a centrally acting analgesic, in the treatment of patients with osteoarthritis knee pain: a 13-week, randomized, placebo-controlled trial. Pain 146, 253–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Skljarevski, V. et al. Efficacy and safety of duloxetine in patients with chronic low back pain. Spine 35, E578–E585 (2010).

    Article  PubMed  Google Scholar 

  132. Chappell, A. S. et al. A double-blind, randomized, placebo-controlled study of the efficacy and safety of duloxetine for the treatment of chronic pain due to osteoarthritis of the knee. Pain Pract. 11, 33–41 (2011).

    Article  PubMed  Google Scholar 

  133. Hochberg, M. C., Wohlreich, M., Gaynor, P., Hanna, S. & Risser, R. Clinically relevant outcomes based on analysis of pooled data from 2 trials of duloxetine in patients with knee osteoarthritis. J. Rheum. 39, 352–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Lee, Y. C. & Chen, P. P. A review of SSRIs and SNRIs in neuropathic pain. Expert Opin. Pharmacother. 11, 2813–2825 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Derry, S., Gill, D., Phillips, T. & Moore, R. A. Milnacipran for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 3, CD008244 (2012).

    Google Scholar 

  136. Lane, N. E. et al. RN624 (anti-NGF) improves pain and function in subjects with moderate knee osteoarthritis: a phase I study. Arthritis Rheum. 52, S461 (2005).

    Article  Google Scholar 

  137. Brown, M. T. et al. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial. J. Pain 13, 790–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Balanescu, A. R. et al. Efficacy and safety of tanezumab added on to diclofenac sustained release in patients with knee or hip osteoarthritis: a double-blind, placebo-controlled, parallel-group, multicentre phase III randomised clinical trial. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-203164.

  139. Brown, M. T. et al. Tanezumab reduces osteoarthritic hip pain: results of a randomized, double-blind, placebo-controlled phase III trial. Arthritis Rheum. 65, 1795–1803 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Spierings, E. L. et al. A phase III placebo- and oxycodone-controlled study of tanezumab in adults with osteoarthritis pain of the hip or knee. Pain http://dx.doi.org/10.1016/j.pain.2013.04.035.

  141. FDA Center For Drug Evaluation And Research. Arthritis Advisory Committee Meeting: March 12, 2012. FDA [online].

  142. Hefti, F. F. et al. Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol. Sci. 27, 85–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Pezet, S. & McMahon, S. B. Neurotrophins: mediators and modulators of pain. Annu. Rev. Neurosci. 29, 507–538 (2006).

    Article  CAS  Google Scholar 

  144. Bonnin, M. P., Basiglini, L. & Archbold, H. A. What are the factors of residual pain after uncomplicated TKA? Knee Surg. Sports Traumatol. Arthrosc. 19, 1411–1417 (2011).

    Article  PubMed  Google Scholar 

  145. Hofmann, S., Seitlinger, G., Djahani, O. & Pietsch, M. The painful knee after TKA: a diagnostic algorithm for failure analysis. Knee Surg. Sports Traumatol. Arthrosc. 19, 1442–1452 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Fortin, P. R. et al. Outcomes of total hip and knee replacement: preoperative functional status predicts outcomes at six months after surgery. Arthritis Rheum. 42, 1722–1728 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Lingard, E. A., Katz, J. N., Wright, E. A. & Sledge, C. B. Predicting the outcome of total knee arthroplasty. J. Bone Joint Surg. Am. 86A, 2179–2186 (2004).

    Article  Google Scholar 

  148. Valdes, A. M. et al. Inverse relationship between preoperative radiographic severity and postoperative pain in patients with osteoarthritis who have undergone total joint arthroplasty. Semin. Arthritis Rheum. 41, 568–575 (2012).

    Article  PubMed  Google Scholar 

  149. Diatchenko, L., Nackley, A. G., Tchivileva, I. E., Shabalina, S. A. & Maixner, W. Genetic architecture of human pain perception. Trends Genet. 23, 605–613 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Valdes, A. M. et al. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis. Ann. Rheum. Dis. 70, 1556–1561 (2011).

    Article  PubMed  Google Scholar 

  151. Malfait, A. M. et al. A role for PACE4 in osteoarthritis pain: evidence from human genetic association and null mutant phenotype. Ann. Rheum. Dis. 71, 1042–1048 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Sorge, R. E. et al. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat. Med. 18, 595–599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. van Meurs, J. B. et al. A functional polymorphism in the catechol-O-methyltransferase gene is associated with osteoarthritis-related pain. Arthritis Rheum. 60, 628–629 (2009).

    Article  PubMed  Google Scholar 

  154. Reimann, F. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc. Natl Acad. Sci. USA 107, 5148–5153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Valdes, A. M. et al. Role of the Nav1.7 R1150W amino acid change in susceptibility to symptomatic knee osteoarthritis and multiple regional pain. Arthritis Care Res. 63, 1440–1444 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.-M. Malfait acknowledges funding from the US National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR060364 and R01AR064251) and from the Arthritis Foundation. The funding sources had no role in the preparation of this publication.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Thomas J. Schnitzer.

Ethics declarations

Competing interests

A. M. Malfait declares that she has acted as a consultant for Allergan. T. J. Schnitzer declares that he has acted as a consultant for Pfizer, Janssen and Regeneron, and has received research funding from Pfizer and Lilly.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malfait, AM., Schnitzer, T. Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol 9, 654–664 (2013). https://doi.org/10.1038/nrrheum.2013.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing