Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacogenetics: can genes determine treatment efficacy and safety in JIA?

Key Points

  • A diagnosis of juvenile idiopathic arthritis (JIA) routinely results in many years of immunosuppressive therapy, administered daily or weekly as appropriate for the therapeutic agent

  • Validated and reliable clinical, biological or molecular markers that predict treatment efficacy and safety are currently lacking

  • Candidate-gene and genome-wide pharmacogenetic studies in JIA have identified single nucleotide polymorphisms (SNPs) and gene regions potentially associated with toxicity or response to methotrexate (MTX) and etanercept

  • Associations of SNPs and gene regions with the MTX and etanercept pathways have not been replicated or shown consistency

  • Studies in children provide the unique opportunity to understand ontogeny processes in addition to disease and treatment associations

  • Access to large, well-documented cohorts of patients with JIA and advanced molecular techniques might facilitate the identification of novel pathways and of patients likely to respond to a specific drug

Abstract

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition in childhood, with many children requiring immunomodulatory therapies for many years following diagnosis. A considerable proportion of children experience therapeutic inefficacy or substantial adverse effects, or both, but a lack of reliable clinical indicators and biomarkers to predict treatment response prevents optimization of existing therapies. The identification of valid candidate gene variants involved in the pathways of methotrexate and etanercept, the most commonly used medications in JIA, has seen little success to date. The limited success of these studies is possibly due to the presence of confounding variables in the study populations, the heterogeneity of outcome parameters used to determine treatment response and the small number of candidate gene variants analysed. The first genome-wide pharmacogenetic study in JIA has identified gene regions of particular biological interest, but these findings require validation. Moreover, epigenetic mechanisms as well as ontogeny processes might be additional factors influencing drug responses. Access to large, well-documented JIA cohorts and the rapid development of advanced genome analytics is ushering in a personalized approach to treatment. The discovery of new pharmacogenomic biomarkers and systems pathways can provide new drug targets and predictive tools for improved drug response and fewer adverse drug reactions in JIA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors influencing the pharmacology of methotrexate.
Figure 2: Pathways of methotrexate metabolism.

Similar content being viewed by others

References

  1. Andersson Gäre, B. Juvenile arthritis—who gets it, where and when? A review of current data on incidence and prevalence. Clin. Exp. Rheumatol. 17, 367–374 (1999).

    PubMed  Google Scholar 

  2. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  3. Horneff, G. Juvenile Idiopathic Arthritis (Uni. Med. Verlag, 2014).

    Google Scholar 

  4. Adib, N., Silman, A. & Thomson, W. Outcome following onset of juvenile idiopathic inflammatory arthritis: I. frequency of different outcomes. Rheumatology (Oxford) 44, 995–1001 (2005).

    Article  CAS  Google Scholar 

  5. Ringold, S. & Wallace, C. A. Measuring clinical response and remission in juvenile idiopathic arthritis. Curr. Opin. Rheumatol. 19, 471–476 (2007).

    Article  PubMed  Google Scholar 

  6. Wallace, C. A., Ravelli, A., Huang, B. & Giannini, E. H. Preliminary validation of clinical remission criteria using the OMERACT filter for select categories of juvenile idiopathic arthritis. J. Rheumatol. 33, 789–795 (2006).

    PubMed  Google Scholar 

  7. Wallace, C. A., Ruperto, N. & Giannini, E. Preliminary criteria for clinical remission for select categories of juvenile idiopathic arthritis. J. Rheumatol. 31, 2290–2294 (2004).

    PubMed  Google Scholar 

  8. Wallace, C. A., Huang, B., Bandeira, M., Ravelli, A. & Giannini, E. H. Patterns of clinical remission in select categories of juvenile idiopathic arthritis. Arthritis Rheum. 52, 3554–3562 (2005).

    Article  PubMed  Google Scholar 

  9. Giannini, E. H. et al. Preliminary definition of improvement in juvenile arthritis. Arthritis Rheum. 40, 1202–1209 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Consolaro, A. et al. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 61, 658–666 (2009).

    Article  PubMed  Google Scholar 

  11. Wallace, C. A., Giannini, E. H., Huang, B., Itert, L. & Ruperto, N. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res. (Hoboken) 63, 929–936 (2011).

    Article  Google Scholar 

  12. Filocamo, G. et al. A new approach to clinical care of juvenile idiopathic arthritis: the Juvenile Arthritis Multidimensional Assessment Report. J. Rheumatol. 38, 938–953 (2011).

    Article  PubMed  Google Scholar 

  13. McErlane, F., Beresford, M. W., Baildam, E. M., Thomson, W. & Hyrich, K. L. Recent developments in disease activity indices and outcome measures for juvenile idiopathic arthritis. Rheumatology (Oxford) 52, 1941–1951 (2013).

    Article  Google Scholar 

  14. Dueckers, G. et al. Evidence and consensus based GKJR guidelines for the treatment of juvenile idiopathic arthritis. Clin. Immunol. 142, 176–193 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Ringold, S. et al. 2013 update of the 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: recommendations for the medical therapy of children with systemic juvenile idiopathic arthritis and tuberculosis screening among children receiving biologic medications. Arthritis Rheum. 65, 2499–2512 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Beukelman, T. et al. 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res. (Hoboken) 63, 465–482 (2011).

    Article  Google Scholar 

  17. van der Heijden, J. W., Dijkmans, B. A., Scheper, R. J. & Jansen, G. Drug insight: resistance to methotrexate and other disease-modifying antirheumatic drugs—from bench to bedside. Nat. Clin. Pract. Rheumatol. 3, 26–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Maneiro, J. R., Salgado, E. & Gomez-Reino, J. J. Immunogenicity of monoclonal antibodies against tumor necrosis factor used in chronic immune-mediated inflammatory conditions: systematic review and meta-analysis. JAMA Intern. Med. 173, 1416–1428 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Vincent, F. B. et al. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann. Rheum. Dis. 72, 165–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Altman, R. B. Genetic sequence data for pharmacogenomics. Curr. Opin. Drug Discov. Devel. 6, 297–303 (2003).

    CAS  PubMed  Google Scholar 

  21. McLeod, H. L. Drug pathways: moving beyond single gene pharmacogenetics. Pharmacogenomics 5, 139–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Eichelbaum, M., Altman, R. B., Ratain, M. & Klein, T. E. New feature: pathways and important genes from PharmGKB. Pharmacogenet. Genomics 19, 403 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Pharmacogenomics Knowledge Base. PharmGKB [online], (2014).

  24. Thorn, C. F., Klein, T. E. & Altman, R. B. PharmGKB: the Pharmacogenomics Knowledge Base. Methods Mol. Biol. 1015, 311–320 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ramanan, A. V., Whitworth, P. & Baildam, E. M. Use of methotrexate in juvenile idiopathic arthritis. Arch. Dis. Child. 88, 197–200 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hashkes, P. J. & Laxer, R. M. Update on the medical treatment of juvenile idiopathic arthritis. Curr. Rheumatol. Rep. 8, 450–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Dervieux, T. et al. HPLC determination of erythrocyte methotrexate polyglutamates after low-dose methotrexate therapy in patients with rheumatoid arthritis. Clin. Chem. 49, 1632–1641 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Ranganathan, P. & McLeod, H. L. Methotrexate pharmacogenetics: the first step toward individualized therapy in rheumatoid arthritis. Arthritis Rheum. 54, 1366–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Tian, H. & Cronstein, B. N. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull. NYU Hosp. Jt Dis. 65, 168–173 (2007).

    PubMed  Google Scholar 

  30. Angelis-Stoforidis, P., Vajda, F. J. & Christophidis, N. Methotrexate polyglutamate levels in circulating erythrocytes and polymorphs correlate with clinical efficacy in rheumatoid arthritis. Clin. Exp. Rheumatol. 17, 313–320 (1999).

    CAS  PubMed  Google Scholar 

  31. Dervieux, T., Meshkin, B. & Neri, B. Pharmacogenetic testing: proofs of principle and pharmacoeconomic implications. Mutat. Res. 573, 180–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Montesinos, M. C. et al. Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum. 48, 240–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Montesinos, M. C. et al. The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5′-nucleotidase: findings in a study of ecto-5′-nucleotidase gene-deficient mice. Arthritis Rheum. 56, 1440–1445 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Mikkelsen, T. S. et al. PharmGKB summary: methotrexate pathway. Pharmacogenet. Genomics 21, 679–686 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bannwarth, B., Pehourcq, F., Schaeverbeke, T. & Dehais, J. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin. Pharmacokinet. 30, 194–210 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Cronstein, B. N. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol. Rev. 57, 163–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Morgan, S. L. & Baggott, J. E. Folate supplementation during methotrexate therapy for rheumatoid arthritis. Clin. Exp. Rheumatol. 28 (Suppl. 61), S102–S109 (2010).

    CAS  PubMed  Google Scholar 

  38. Chan, E. S., Fernandez, P. & Cronstein, B. N. Adenosine in inflammatory joint diseases. Purinergic Signal. 3, 145–152 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory effects of methotrexate are mediated by adenosine. Adv. Exp. Med. Biol. 370, 411–416 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J. Clin. Invest. 92, 2675–2682 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Cronstein, B. N. The pharmacology of antiinflammatory agents: a new paradigm. Mt Sinai J. Med. 60, 209–217 (1993).

    CAS  PubMed  Google Scholar 

  42. Cronstein, B. N. Molecular mechanism of methotrexate action in inflammation. Inflammation 16, 411–423 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Montesinos, M. C., Desai, A. & Cronstein, B. N. Suppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollate-induced peritonitis. Arthritis Res. Ther. 8, R53 (2006).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Giannini, E. H. et al. Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.–U.S.S.R. double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study Group and The Cooperative Children's Study Group. N. Engl. J. Med. 326, 1043–1049 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Bulatovic, M. et al. High prevalence of methotrexate intolerance in juvenile idiopathic arthritis: development and validation of a methotrexate intolerance severity score. Arthritis Rheum. 63, 2007–2013 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Mulligan, K. et al. Mothers' reports of the difficulties that their children experience in taking methotrexate for Juvenile Idiopathic Arthritis and how these impact on quality of life. Pediatr. Rheumatol. Online J. 11, 23 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Owen, S. A. et al. MTHFR gene polymorphisms and outcome of methotrexate treatment in patients with rheumatoid arthritis: analysis of key polymorphisms and meta-analysis of C677T and A1298C polymorphisms. Pharmacogenomics J. 13, 137–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Ansari, M. & Krajinovic, M. Pharmacogenomics in cancer treatment defining genetic bases for inter-individual differences in responses to chemotherapy. Curr. Opin. Pediatr. 19, 15–22 (2007).

    Article  PubMed  Google Scholar 

  49. Rozen, R. Molecular genetics of methylenetetrahydrofolate reductase deficiency. J. Inherit. Metab. Dis. 19, 589–594 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Haagsma, C. J. et al. Influence of sulphasalazine, methotrexate, and the combination of both on plasma homocysteine concentrations in patients with rheumatoid arthritis. Ann. Rheum. Dis. 58, 79–84 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. van Ede, A. E. et al. The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum. 44, 2525–2530 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Kumagai, K., Hiyama, K., Oyama, T., Maeda, H. & Kohno, N. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int. J. Mol. Med. 11, 593–600 (2003).

    CAS  PubMed  Google Scholar 

  53. Berkun, Y. et al. Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann. Rheum. Dis. 63, 1227–1231 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Urano, W. et al. Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 12, 183–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. James, H. M. et al. Common polymorphisms in the folate pathway predict efficacy of combination regimens containing methotrexate and sulfasalazine in early rheumatoid arthritis. J. Rheumatol. 35, 562–571 (2008).

    CAS  PubMed  Google Scholar 

  56. Zeng, Q. Y., Wang, Y. K., Xiao, Z. Y. & Chen, S. B. Pharmacogenetic study of 5, 10-methylenetetrahydrofolate reductase C677T and thymidylate synthase 3R/2R gene polymorphisms and methotrexate-related toxicity in Chinese Han patients with inflammatory arthritis. Ann. Rheum. Dis. 67, 1193–1194 (2008).

    Article  PubMed  Google Scholar 

  57. Aggarwal, P., Naik, S., Mishra, K. P., Aggarwal, A. & Misra, R. Correlation between methotrexate efficacy & toxicity with C677T polymorphism of the methylenetetrahydrofolate gene in rheumatoid arthritis patients on folate supplementation. Indian J. Med. Res. 124, 521–526 (2006).

    CAS  PubMed  Google Scholar 

  58. Kurzawski, M., Pawlik, A., Safranow, K., Herczynska, M. & Drozdzik, M. 677C>T and 1298A>C MTHFR polymorphisms affect methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics 8, 1551–1559 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Spyridopoulou, K. P., Dimou, N. L., Hamodrakas, S. J. & Bagos, P. G. Methylene tetrahydrofolate reductase gene polymorphisms and their association with methotrexate toxicity: a meta-analysis. Pharmacogenet. Genomics 22, 117–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Taniguchi, A. et al. Validation of the associations between single nucleotide polymorphisms or haplotypes and responses to disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: a proposal for prospective pharmacogenomic study in clinical practice. Pharmacogenet. Genomics 17, 383–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Todorovic, Z. et al. Homocysteine serum levels and MTHFR C677T genotype in patients with Parkinson's disease, with and without levodopa therapy. J. Neurol. Sci. 248, 56–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Herrlinger, K. R. et al. The pharmacogenetics of methotrexate in inflammatory bowel disease. Pharmacogenet. Genomics 15, 705–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Frosst, P. et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10, 111–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Chan, E. S. & Cronstein, B. N. Molecular action of methotrexate in inflammatory diseases. Arthritis Res. 4, 266–273 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Schmeling, H., Biber, D., Heins, S. & Horneff, G. Influence of methylenetetrahydrofolate reductase polymorphisms on efficacy and toxicity of methotrexate in patients with juvenile idiopathic arthritis. J. Rheumatol. 32, 1832–1836 (2005).

    CAS  PubMed  Google Scholar 

  66. van der Put, N. M. et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am. J. Hum. Genet. 62, 1044–1051 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Weisberg, I., Tran, P., Christensen, B., Sibani, S. & Rozen, R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab. 64, 169–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Tukova, J. et al. 677TT genotype is associated with elevated risk of methotrexate (MTX) toxicity in juvenile idiopathic arthritis: treatment outcome, erythrocyte concentrations of MTX and folates, and MTHFR polymorphisms. J. Rheumatol. 37, 2180–2186 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Yanagimachi, M. et al. Influence of polymorphisms within the methotrexate pathway genes on the toxicity and efficacy of methotrexate in patients with juvenile idiopathic arthritis. Br. J. Clin. Pharmacol. 71, 237–243 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Panetta, J. C., Wall, A., Pui, C. H., Relling, M. V. & Evans, W. E. Methotrexate intracellular disposition in acute lymphoblastic leukemia: a mathematical model of gamma-glutamyl hydrolase activity. Clin. Cancer Res. 8, 2423–2429 (2002).

    CAS  PubMed  Google Scholar 

  71. Becker, M. L. et al. The effect of genotype on methotrexate polyglutamate variability in juvenile idiopathic arthritis and association with drug response. Arthritis Rheum. 63, 276–285 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Albers, H. M. et al. Time to treatment as an important factor for the response to methotrexate in juvenile idiopathic arthritis. Arthritis Rheum. 61, 46–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Moncrieffe, H. et al. Generation of novel pharmacogenomic candidates in response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype. Pharmacogenet. Genomics 20, 665–676 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Delerive, P., Fruchart, J. C. & Staels, B. Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol. 169, 453–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Jansen, S., Cashman, K., Thompson, J. G., Pantaleon, M. & Kaye, P. L. Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-alpha (PPARA) cause peroxisome proliferation in preimplantation mouse embryos. Reproduction 138, 493–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Hinks, A. et al. Association of the 5-aminoimidazole-4-carboxamide ribonucleotide transformylase gene with response to methotrexate in juvenile idiopathic arthritis. Ann. Rheum. Dis. 70, 1395–1400 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. de Rotte, M. C. et al. ABCB1 and ABCC3 gene polymorphisms are associated with first-year response to methotrexate in juvenile idiopathic arthritis. J. Rheumatol. 39, 2032–2040 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Ott, C. J. et al. Intronic enhancers coordinate epithelial-specific looping of the active CFTR locus. Proc. Natl Acad. Sci. USA 106, 19934–19939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Conseil, G., Deeley, R. G. & Cole, S. P. Polymorphisms of MRP1 (ABCC1) and related ATP-dependent drug transporters. Pharmacogenet. Genomics 15, 523–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Bulatovic, M. et al. Prediction of clinical non-response to methotrexate treatment in juvenile idiopathic arthritis. Ann. Rheum. Dis. 71, 1484–1489 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Cobb, J. et al. Genome-wide data reveal novel genes for methotrexate response in a large cohort of juvenile idiopathic arthritis cases. Pharmacogenomics J. http://dx.doi.org/10.1038/tpj.2014.3/.

  82. Li, X., Thyssen, G., Beliakoff, J. & Sun, Z. The novel PIAS-like protein hZimp10 enhances Smad transcriptional activity. J. Biol. Chem. 281, 23748–23756 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Ellinghaus, D. et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 90, 636–647 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Patsopoulos, N. A. et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann. Neurol. 70, 897–912 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Horneff, G. Update on biologicals for treatment of juvenile idiopathic arthritis. Expert Opin.Biol. Ther. 13, 361–376 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Shenoi, S. & Wallace, C. A. Tumor necrosis factor inhibitors in the management of juvenile idiopathic arthritis: an evidence-based review. Paediatr. Drugs 12, 367–377 (2010).

    Article  PubMed  Google Scholar 

  88. Hayward, K. & Wallace, C. A. Recent developments in anti-rheumatic drugs in pediatrics: treatment of juvenile idiopathic arthritis. Arthritis Res. Ther. 11, 216 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol. Ther. 117, 244–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Horneff, G. et al. The German etanercept registry for treatment of juvenile idiopathic arthritis. Ann. Rheum. Dis. 63, 1638–1644 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Anink, J. et al. Treatment choices of paediatric rheumatologists for juvenile idiopathic arthritis: etanercept or adalimumab? Rheumatology (Oxford) 52, 1674–1679 (2013).

    Article  CAS  Google Scholar 

  92. Horneff, G. et al. Efficacy and safety of open-label etanercept on extended oligoarticular juvenile idiopathic arthritis, enthesitis-related arthritis and psoriatic arthritis: part 1 (week 12) of the CLIPPER study. Ann. Rheum. Dis. 73, 1114–1122 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Kohno, T., Tam, L. T., Stevens, S. R. & Louie, J. S. Binding characteristics of tumor necrosis factor receptor-Fc fusion proteins vs anti-tumor necrosis factor mAbs. J. Investig. Dermatol. Symp. Proc. 12, 5–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Giannini, E. H. et al. Long-term safety and effectiveness of etanercept in children with selected categories of juvenile idiopathic arthritis. Arthritis Rheum. 60, 2794–2804 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Lovell, D. J. et al. Safety and efficacy of up to eight years of continuous etanercept therapy in patients with juvenile rheumatoid arthritis. Arthritis Rheum. 58, 1496–1504 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Schmeling, H. & Horneff, G. Tumour necrosis factor alpha promoter polymorphisms and etanercept therapy in juvenile idiopathic arthritis. Rheumatol. Int. 27, 383–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Basic, J. et al. Etanercept reduces matrix metalloproteinase-9 level in children with polyarticular juvenile idiopathic arthritis and TNF-alpha-308GG genotype. J. Physiol. Biochem. 66, 173–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Cimaz, R. et al. IL1 and TNF gene polymorphisms in patients with juvenile idiopathic arthritis treated with TNF inhibitors. Ann. Rheum. Dis. 66, 900–904 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Allen, R. D. Polymorphism of the human TNF-alpha promoter—random variation or functional diversity? Mol. Immunol. 36, 1017–1027 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Makhatadze, N. J. Tumor necrosis factor locus: genetic organisation and biological implications. Hum. Immunol. 59, 571–579 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Kacevska, M., Ivanov, M. & Ingelman-Sundberg, M. Perspectives on epigenetics and its relevance to adverse drug reactions. Clin. Pharmacol. Ther. 89, 902–907 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Gomez, A. & Ingelman-Sundberg, M. Pharmacoepigenetic aspects of gene polymorphism on drug therapies: effects of DNA methylation on drug response. Expert Rev. Clin. Pharmacol. 2, 55–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Ellis, J. A. et al. Genome-scale case-control analysis of CD4+ T-cell DNA methylation in juvenile idiopathic arthritis reveals potential targets involved in disease. Clin. Epigenetics 4, 20 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Meda, F., Folci, M., Baccarelli, A. & Selmi, C. The epigenetics of autoimmunity. Cell. Mol. Immunol. 8, 226–236 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Balada, E., Ordi-Ros, J. & Vilardell-Tarres, M. DNA methylation and systemic lupus erythematosus. Ann. N. Y. Acad. Sci. 1108, 127–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Javierre, B. M. et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20, 170–179 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Liu, C. C. et al. Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus. Lupus 20, 131–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. De Santis, M. & Selmi, C. The therapeutic potential of epigenetics in autoimmune diseases. Clin. Rev. Allergy Immunol. 42, 92–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Wagner-Weiner, L. Pediatric rheumatology for the adult rheumatologist. J. Clin. Rheumatol. 14, 109–119 (2008).

    Article  PubMed  Google Scholar 

  111. Heiligenhaus, A., Heinz, C., Edelsten, C., Kotaniemi, K. & Minden, K. Review for disease of the year: epidemiology of juvenile idiopathic arthritis and its associated uveitis: the probable risk factors. Ocul. Immunol. Inflamm. 21, 180–191 (2013).

    Article  PubMed  Google Scholar 

  112. Angeles-Han, S. T. et al. Risk markers of juvenile idiopathic arthritis-associated uveitis in the Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry. J. Rheumatol. 40, 2088–2096 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  113. Coulson, E. J., Hanson, H. J. & Foster, H. E. What does an adult rheumatologist need to know about juvenile idiopathic arthritis? Rheumatology (Oxford) http://dx.doi.org/10.1093/rheumatology/keu257/.

  114. Ward, R. M. & Kauffman, R. Future of pediatric therapeutics: reauthorization of BPCA and PREA. Clin. Pharmacol. Ther. 81, 477–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Steinbrook, R. Testing medications in children. N. Engl. J. Med. 347, 1462–1470 (2002).

    Article  PubMed  Google Scholar 

  116. Hines, R. N. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol. Ther. 118, 250–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Husain, A., Loehle, J. A. & Hein, D. W. Clinical pharmacogenetics in pediatric patients. Pharmacogenomics 8, 1403–1411 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Goldman, J., Becker, M. L., Jones, B., Clements, M. & Leeder, J. S. Development of biomarkers to optimize pediatric patient management: what makes children different? Biomark. Med. 5, 781–794 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Alcorn, J. & McNamara, P. J. Ontogeny of hepatic and renal systemic clearance pathways in infants: part II. Clin. Pharmacokinet. 41, 1077–1094 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Alcorn, J. & McNamara, P. J. Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin. Pharmacokinet. 41, 959–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Fanos, V., Antonucci, R. & Atzori, L. Metabolomics in the developing infant. Curr. Opin. Pediatr. http://dx.doi.org/10.1097/MOP.0b013e328363ec8b/.

  122. Mussap, M., Antonucci, R., Noto, A. & Fanos, V. The role of metabolomics in neonatal and pediatric laboratory medicine. Clin. Chim. Acta 426, 127–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Kearns, G. L. et al. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 349, 1157–1167 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Relling, M. V. et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood 101, 3862–3867 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Hartford, C. et al. Genome scan implicates adhesion biological pathways in secondary leukemia. Leukemia 21, 2128–2136 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Carleton, B. Demonstrating utility of pharmacogenetics in pediatric populations: methodological considerations. Clin. Pharmacol. Ther. 88, 757–759 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Becker, M. L. & Leeder, J. S. Identifying genomic and developmental causes of adverse drug reactions in children. Pharmacogenomics 11, 1591–1602 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Isaacs, J. D. & Ferraccioli, G. The need for personalised medicine for rheumatoid arthritis. Ann. Rheum. Dis. 70, 4–7 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.S. researched data and wrote the manuscript. H.S., G.H., S.M.B. and M.J.F. contributed substantially for the discussion of content and in reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Heinrike Schmeling.

Ethics declarations

Competing interests

H.S. has received funding for industry-driven clinical trials, advisory board membership and honourara from AbbVie, Pfizer, Roche and UCB. G.H. has received funding and speaker fees from AbbVie, Pfizer, Novartis and Roche. S.B. and M.J.F. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmeling, H., Horneff, G., Benseler, S. et al. Pharmacogenetics: can genes determine treatment efficacy and safety in JIA?. Nat Rev Rheumatol 10, 682–690 (2014). https://doi.org/10.1038/nrrheum.2014.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.140

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research