Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Alternative pathways of osteoclastogenesis in inflammatory arthritis

Abstract

Osteoclasts are cells of haematopoietic origin that are uniquely specialized to degrade bone. Under physiological conditions, the osteoclastogenesis pathway depends on macrophage colony-stimulating factor 1 (CSF-1, also known as M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). However, an emerging hypothesis is that alternative pathways of osteoclast generation might be active during inflammatory arthritis. In this Perspectives article, we summarize the physiological pathway of osteoclastogenesis and then focus on experimental findings that support the hypothesis that infiltrating inflammatory cells and the cytokine milieu provide multiple routes to bone destruction. The precise identity of osteoclast precursor(s) is not yet known. We propose that myeloid cell differentiation during inflammation could be an important contributor to the differentiation of osteoclast populations and their associated pathologies. Understanding the dynamics of osteoclast differentiation in inflammatory arthritis is crucial for the development of therapeutic strategies for inflammatory joint disease in children and adults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bone remodelling and physiological osteoclast differentiation.
Figure 2: Activation of macrophages and pathological osteoclast differentiation.

Similar content being viewed by others

References

  1. McQueen, F. M. et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosions at four months after symptom onset. Ann. Rheum. Dis. 57, 350–356 (1998).

    Article  CAS  Google Scholar 

  2. Kane, D., Stafford, L., Bresnihan, B. & FitzGerald, O. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology (Oxford) 42, 1460–1468 (2003).

    Article  CAS  Google Scholar 

  3. Magni-Manzoni, S., Malattia, C., Lanni, S. & Ravelli, A. Advances and challenges in imaging in juvenile idiopathic arthritis. Nat. Rev. Rheumatol. 8, 329–336 (2012).

    Article  CAS  Google Scholar 

  4. Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649 (2003).

    Article  CAS  Google Scholar 

  5. Nombela-Arrieta, C., Ritz, J. & Silberstein, L. E. The elusive nature and function of mesenchymal stem cells. Nat. Rev. Mol. Cell Biol. 12, 126–131 (2011).

    Article  CAS  Google Scholar 

  6. Walsh, M. C. et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33–63 (2006).

    Article  CAS  Google Scholar 

  7. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

    Article  CAS  Google Scholar 

  8. Karsenty, G. Transcriptional control of skeletogenesis. Annu. Rev. Genomics Hum. Genet. 9, 183–196 (2008).

    Article  CAS  Google Scholar 

  9. So, H. et al. Microphthalmia transcription factor and PU.1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression. J. Biol. Chem. 278, 24209–24216 (2003).

    Article  CAS  Google Scholar 

  10. Kim, Y. et al. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J. Biol. Chem. 280, 32905–32913 (2005).

    Article  CAS  Google Scholar 

  11. Andersen, M. et al. Synovial explant inflammatory mediator production corresponds to rheumatoid arthritis imaging hallmarks: a cross sectional study. Arthritis Res. Ther. 16, R107 (2014).

    Article  Google Scholar 

  12. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  Google Scholar 

  13. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  Google Scholar 

  14. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  Google Scholar 

  15. Ji, J. D. et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-γ in human osteoclast precursors. J. Immunol. 183, 7223–7233 (2009).

    Article  CAS  Google Scholar 

  16. Joyce-Shaikh, B. et al. Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. J. Exp. Med. 207, 579–589 (2010).

    Article  CAS  Google Scholar 

  17. Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004).

    Article  CAS  Google Scholar 

  18. Kim, N., Takami, M., Rho, J., Josien, R. & Choi, Y. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 195, 201–209 (2002).

    Article  CAS  Google Scholar 

  19. Alnaeeli, M., Penninger, J. M. & Teng, Y.-T. A. Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J. Immunol. 177, 3314–3326 (2006).

    Article  CAS  Google Scholar 

  20. Wakkach, A. et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood 112, 5074–5083 (2008).

    Article  CAS  Google Scholar 

  21. Rivollier, A. et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104, 4029–4037 (2004).

    Article  CAS  Google Scholar 

  22. Tucci, M. et al. Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin-17A stimulation. Br. J. Haematol. 161, 821–831 (2013).

    Article  CAS  Google Scholar 

  23. Mensah, K. A. et al. Mediation of nonerosive arthritis in a mouse model of lupus by interferon-α-stimulated monocyte differentiation that is nonpermissive of osteoclastogenesis. Arthritis Rheum. 62, 1127–1137 (2010).

    Article  CAS  Google Scholar 

  24. Jacome-Galarza, C. E., Lee, S. K., Lorenzo, J. A. & Aguila, H. L. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J. Bone Miner. Res. 28, 1203–1213 (2013).

    Article  CAS  Google Scholar 

  25. Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444 (1990).

    Article  CAS  Google Scholar 

  26. MacDonald, K. P. et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J. Immunol. 175, 1399–1405 (2005).

    Article  CAS  Google Scholar 

  27. Niida, S. et al. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J. Exp. Med. 190, 293–298 (1999).

    Article  CAS  Google Scholar 

  28. Lean, J. M., Fuller, K. & Chambers, T. J. FLT3 ligand can substitute for macrophage colony-stimulating factor in support of osteoclast differentiation and function. Blood 98, 2707–2713 (2001).

    Article  CAS  Google Scholar 

  29. Adamopoulos, I. E., Xia, Z., Lau, Y. S. & Athanasou, N. A. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis. Biochem. Biophys. Res. Commun. 350, 478–483 (2006).

    Article  CAS  Google Scholar 

  30. Wei, S. et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J. Leukoc. Biol. 88, 495–505 (2010).

    Article  CAS  Google Scholar 

  31. Lee, M. S. et al. GM-CSF regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. J. Immunol. 183, 3390–3399 (2009).

    Article  CAS  Google Scholar 

  32. Chiu, Y. H. et al. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J. Bone Miner. Res. 27, 79–92 (2012).

    Article  CAS  Google Scholar 

  33. Lari, R. et al. Macrophage lineage phenotypes and osteoclastogenesis—complexity in the control by GM-CSF and TGF-β. Bone 40, 323–336 (2007).

    Article  CAS  Google Scholar 

  34. Lacey, D. C. et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J. Immunol. 188, 5752–5765 (2012).

    Article  CAS  Google Scholar 

  35. Hiasa, M. et al. GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-α converting enzyme (TACE). Blood 114, 4517–4526 (2009).

    Article  CAS  Google Scholar 

  36. Nomura, K., Kuroda, S., Yoshikawa, H. & Tomita, T. Inflammatory osteoclastogenesis can be induced by GM-CSF and activated under TNF immunity. Biochem. Biophys. Res. Commun. 367, 881–887 (2008).

    Article  CAS  Google Scholar 

  37. Taylor, R. M., Kashima, T. G., Knowles, H. J. & Athanasou, N. A. VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology. Lab. Invest. 92, 1398–1406 (2012).

    Article  CAS  Google Scholar 

  38. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    Article  CAS  Google Scholar 

  39. Chen, Z., Buki, K., Vaaraniemi, J., Gu, G. & Vaananen, H. K. The critical role of IL-34 in osteoclastogenesis. PLoS ONE 6, e18689 (2011).

    Article  CAS  Google Scholar 

  40. Gravallese, E. M. et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol. 152, 943–951 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sato, K. et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    Article  CAS  Google Scholar 

  42. Pettit, A. R. et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699 (2001).

    Article  CAS  Google Scholar 

  43. Sinningen, K. et al. Skeletal and extraskeletal actions of denosumab. Endocrine 42, 52–62 (2012).

    Article  CAS  Google Scholar 

  44. Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad. Sci. USA 97, 1566–1571 (2000).

    Article  CAS  Google Scholar 

  45. Kobayashi, K. et al. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191, 275–286 (2000).

    Article  CAS  Google Scholar 

  46. Kim, N. et al. Osteoclast differentiation independent of the TRANCE–RANK–TRAF6 axis. J. Exp. Med. 202, 589–595 (2005).

    Article  CAS  Google Scholar 

  47. Kadono, Y. et al. Strength of TRAF6 signalling determines osteoclastogenesis. EMBO Rep. 6, 171–176 (2005).

    Article  CAS  Google Scholar 

  48. Wei, S., Kitaura, H., Zhou, P., Ross, F. P. & Teitelbaum, S. L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Invest. 115, 282–290 (2005).

    Article  CAS  Google Scholar 

  49. Kim, J. H. et al. The mechanism of osteoclast differentiation induced by IL-1. J. Immunol. 183, 1862–1870 (2009).

    Article  CAS  Google Scholar 

  50. Yarilina, A., Xu, K., Chen, J. & Ivashkiv, L. B. TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Proc. Natl Acad. Sci. USA 108, 1573–1578 (2011).

    Article  CAS  Google Scholar 

  51. Adamopoulos, I. E. et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J. Immunol. 187, 951–959 (2011).

    Article  CAS  Google Scholar 

  52. Adamopoulos, I. E. et al. Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Res. Ther. 12, R29 (2010).

    Article  Google Scholar 

  53. Yokota, K. et al. Combination of tumor necrosis factor α and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol. 66, 121–129 (2014).

    Article  CAS  Google Scholar 

  54. Axmann, R. et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 60, 2747–2756 (2009).

    Article  CAS  Google Scholar 

  55. Steeve, K. T., Marc, P., Sandrine, T., Dominique, H. & Yannick, F. IL-6, RANKL, TNF-α/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49–60 (2004).

    Article  CAS  Google Scholar 

  56. Adamopoulos, I. E. & Pflanz, S. The emerging role of interleukin 27 in inflammatory arthritis and bone destruction. Cytokine Growth Factor Rev. 24, 115–121 (2013).

    Article  CAS  Google Scholar 

  57. Zaiss, M. M. et al. IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNF-α-mediated bone loss. J. Immunol. 186, 6097–6105 (2011).

    Article  CAS  Google Scholar 

  58. Charles, J. F. et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J. Clin. Invest. 122, 4592–4605 (2012).

    Article  CAS  Google Scholar 

  59. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  Google Scholar 

  60. Amara, K. et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J. Exp. Med. 210, 445–455 (2013).

    Article  CAS  Google Scholar 

  61. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Nguyen for graphic design. Research reported in this publication was supported in part by NIH grant R01 AR062173 and SHC grant 250862 (I.E.A.) and by funding from the UCSF-Stanford Arthritis Center of Excellence funded by the Great Western Region of the Arthritis Foundation (E.D.M). The authors apologize to colleagues for omissions imposed by space limitations.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Iannis E. Adamopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamopoulos, I., Mellins, E. Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol 11, 189–194 (2015). https://doi.org/10.1038/nrrheum.2014.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing