Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Eosinophils in vasculitis: characteristics and roles in pathogenesis

Key Points

  • Eosinophils are granulocytic cells that secrete a wide variety of cytokines, chemokines and other mediators that probably have direct and indirect roles in the pathogenesis of eosinophilic granulomatosis with polyangiitis (EGPA)

  • The clinical manifestations of eosinophil accumulation and activation include tissue fibrosis, thrombosis, and allergic inflammation but depend, to a large degree, on the particular tissue involved

  • Although data is scarce, eosinophils seem to have a central role in disease pathogenesis in all three clinical stages of EGPA

  • Clinical trials using novel therapeutic strategies that specifically target eosinophils are helping define the role of eosinophils in the pathogenesis of EGPA

Abstract

Eosinophils are multifunctional granular leukocytes that are implicated in the pathogenesis of a wide variety of disorders, including asthma, helminth infection, and rare hypereosinophilic syndromes. Although peripheral and tissue eosinophilia can be a feature of many types of small-vessel and medium-vessel vasculitis, the role of eosinophils has been best studied in eosinophilic granulomatosis with polyangiitis (EGPA), where eosinophils are a characteristic finding in all three clinical stages of the disorder. Whereas numerous studies have demonstrated an association between the presence of eosinophils and markers of eosinophil activation in the blood and tissues of patients with EGPA, the precise role of eosinophils in disease pathogenesis has been difficult to ascertain owing to the complexity of the disease process. In this regard, results of clinical trials using novel agents that specifically target eosinophils are providing the first direct evidence of a central role of eosinophils in EGPA. This Review focuses on the aspects of eosinophil biology most relevant to the pathogenesis of vasculitis and provides an update of current knowledge regarding the role of eosinophils in EGPA and other vasculitides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of eosinophils.
Figure 2: Schematic representation of eosinophil trafficking.
Figure 3: Histopathology of EGPA.

Similar content being viewed by others

References

  1. Masi, A. T. et al. The American College of Rheumatology 1990 criteria for the classification of Churg–Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum. 33, 1094–1100 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Jennette, J. C. et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 37, 187–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Gleich, G. J. & Adolphson, C. R. The eosinophilic leukocyte: structure and function. Adv. Immunol. 39, 177–253 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Mullick, F. G., McAllister, H. A. Jr, Wagner, B. M. & Fenoglio, J. J. Jr. Drug related vasculitis. Clinicopathologic correlations in 30 patients. Hum. Pathol. 10, 313–325 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Robinowitz, M., Virmani, R. & McAllister, H. A. J. Spontaneous coronary artery dissection and eosinophilic inflammation: a cause and effect relationship? Am. J. Med. 72, 923–928 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. John, A. E., Thomas, M. S., Berlin, A. A. & Lukacs, N. W. Temporal production of CCL28 corresponds to eosinophil accumulation and airway hyperreactivity in allergic airway inflammation. Am. J. Pathol. 166, 345–353 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hogan, S. P. et al. Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy 38, 709–750 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Moqbel, R. & Lacy, P. New concepts in effector functions of eosinophil cytokines. Clin. Exp. Allergy 30, 1667–1671 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Walsh, G. M. Eosinophil granule proteins and their role in disease. Curr. Opin. Hematol. 8, 28–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Dvorak, A. M., Letourneau, L., Login, G. R., Weller, P. F. & Ackerman, S. J. Ultrastructural localization of the Charcot–Leyden crystal protein (lysophospholipase) to a distinct crystalloid-free granule population in mature human eosinophils. Blood 72, 150–158 (1988).

    CAS  PubMed  Google Scholar 

  12. Melo, R. C., Paganoti, G. F., Dvorak, A. M. & Weller, P. F. The internal architecture of leukocyte lipid body organelles captured by three-dimensional electron microscopy tomography. PLoS ONE 8, e59578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Melo, R. C. et al. Vesicle-mediated secretion of human eosinophil granule-derived major basic protein. Lab. Invest. 89, 769–781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Melo, R. C., Perez, S. A., Spencer, L. A., Dvorak, A. M. & Weller, P. F. Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6, 866–879 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spencer, L. A. et al. Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc. Natl Acad. Sci. USA 103, 3333–3338 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spencer, L. A. et al. Human eosinophils constitutively express multiple TH1, TH2, and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 85, 117–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Neves, J. S., Radke, A. L. & Weller, P. F. Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J. Allergy Clin. Immunol. 125, 477–482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neves, J. S. et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc. Natl Acad. Sci. USA 105, 18478–18483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wright, B. L., Leiferman, K. M. & Gleich, G. J. Eosinophil granule protein localization in eosinophilic endomyocardial disease. N. Engl. J. Med. 365, 187–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Drage, L. A. et al. Evidence for pathogenic involvement of eosinophils and neutrophils in Churg–Strauss syndrome. J. Am. Acad. Dermatol. 47, 209–216 (2002).

    Article  PubMed  Google Scholar 

  21. Saffari, H. et al. Electron microscopy elucidates eosinophil degranulation patterns in patients with eosinophilic esophagitis. J. Allergy Clin. Immunol. http://dx.doi.org/10.1016/j.jaci.2013.11.024 (2014).

  22. Blanchard, C. & Rothenberg, M. E. Biology of the eosinophil. Adv. Immunol. 101, 81–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenberg, H. F., Dyer, K. D. & Foster, P. S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13, 9–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J. J., Jacobsen, E. A., McGarry, M. P., Schleimer, R. P. & Lee, N. A. Eosinophils in health and disease: the LIAR hypothesis. Clin. Exp. Allergy 40, 563–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chu, V. T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12, 151–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Noguchi, H., Kephart, G. M., Colby, T. V. & Gleich, G. J. Tissue eosinophilia and eosinophil degranulation in syndromes associated with fibrosis. Am. J. Pathol. 140, 521–528 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gundel, R. H., Letts, L. G. & Gleich, G. J. Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J. Clin. Invest. 87, 1470–1473 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fryer, A. D., Adamko, D. J., Yost, B. L. & Jacoby, D. B. Effects of inflammatory cells on neuronal M2 muscarinic receptor function in the lung. Life Sci. 64, 449–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Bousquet, J. et al. Indirect evidence of bronchial inflammation assessed by titration of inflammatory mediators in BAL fluid of patients with asthma. J. Allergy Clin. Immunol. 88, 649–660 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Filley, W. V., Holley, K. E., Kephart, G. M. & Gleich, G. J. Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet 2, 11–16 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Kephart, G. M. et al. Marked deposition of eosinophil-derived neurotoxin in adult patients with eosinophilic esophagitis. Am. J. Gastroenterol. 105, 298–307 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Levi-Schaffer, F. et al. Human eosinophils regulate human lung- and skin-derived fibroblast properties in vitro: a role for transforming growth factor beta (TGF-β). Proc. Natl Acad. Sci. USA 96, 9660–9665 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Humbles, A. A. et al. A critical role for eosinophils in allergic airways remodeling. Science 305, 1776–1779 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zagai, U., Skold, C. M., Trulson, A., Venge, P. & Lundahl, J. The effect of eosinophils on collagen gel contraction and implications for tissue remodelling. Clin. Exp. Immunol. 135, 427–433 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gomes, I. et al. Eosinophil-fibroblast interactions induce fibroblast IL-6 secretion and extracellular matrix gene expression: implications in fibrogenesis. J. Allergy Clin. Immunol. 116, 796–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Zagai, U., Dadfar, E., Lundahl, J., Venge, P. & Skold, C. M. Eosinophil cationic protein stimulates TGF-β1 release by human lung fibroblasts in vitro. Inflammation 30, 153–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Ames, P. R., Margaglione, M., Mackie, S. & Alves, J. D. Eosinophilia and thrombophilia in Churg–Strauss syndrome: a clinical and pathogenetic overview. Clin. Appl. Thromb. Hemost. 16, 628–636 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Moosbauer, C. et al. Eosinophils are a major intravascular location for tissue factor storage and exposure. Blood 109, 995–1002 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Mukai, H. Y., Ninomiya, H., Ohtani, K., Nagasawa, T. & Abe, T. Major basic protein binding to thrombomodulin potentially contributes to the thrombosis in patients with eosinophilia. Br. J. Haematol. 90, 892–899 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Slungaard, A., Vercellotti, G. M., Tran, T., Gleich, G. J. & Key, N. S. Eosinophil cationic granule proteins impair thrombomodulin function. A potential mechanism for thromboembolism in hypereosinophilic heart disease. J. Clin. Invest. 91, 1721–1730 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rohrbach, M. S., Wheatley, C. L., Slifman, N. R. & Gleich, G. J. Activation of platelets by eosinophil granule proteins. J. Exp. Med. 172, 1271–1274 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Dorfman, L. J., Ransom, B. R., Forno, L. S. & Kelts, A. Neuropathy in the hypereosinophilic syndrome. Muscle Nerve 6, 291–298 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Wichman, A., Buchthal, F., Pezeshkpour, G. H. & Fauci, A. S. Peripheral neuropathy in hypereosinophilic syndrome. Neurology 35, 1140–1145 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Nascimento, O., De Freitas, M., Chimelli, L. & Scaravilli, F. Peripheral neuropathy in hypereosinophilic syndrome with vasculitis. Arq. Neuropsiquiatr. 49, 450–455 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Costello, R. W. et al. Localization of eosinophils to airway nerves and effect on neuronal M2 muscarinic receptor function. Am. J. Physiol. 273, L93–L103 (1997).

    CAS  PubMed  Google Scholar 

  47. Kingham, P. J. et al. Effects of eosinophils on nerve cell morphology and development: the role of reactive oxygen species and p38 MAP kinase. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L915–L924 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Churg, J. & Strauss, L. Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am. J. Pathol. 27, 277–301 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Lanham, J. G., Elkon, K. B., Pusey, C. D. & Hughes, G. R. Systemic vasculitis with asthma and eosinophilia: a clinical approach to the Churg–Strauss syndrome. Medicine (Baltimore) 63, 65–81 (1984).

    Article  CAS  Google Scholar 

  51. Comarmond, C. et al. Eosinophilic granulomatosis with polyangiitis (Churg–Strauss): clinical characteristics and long-term followup of the 383 patients enrolled in the French Vasculitis Study Group cohort. Arthritis Rheum. 65, 270–281 (2013).

    Article  PubMed  Google Scholar 

  52. Grayson, P. C. et al. New features of disease after diagnosis in 6 forms of systemic vasculitis. J. Rheumatol. 40, 1905–1912 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sable-Fourtassou, R. et al. Antineutrophil cytoplasmic antibodies and the Churg–Strauss syndrome. Ann. Intern. Med. 143, 632–638 (2005).

    Article  PubMed  Google Scholar 

  54. Sinico, R. A. et al. Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg–Strauss syndrome. Arthritis Rheum. 52, 2926–2935 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Sinico, R. A., Bottero, P. & Guillevin, L. Antineutrophil cytoplasmic autoantibodies and clinical phenotype in patients with Churg–Strauss syndrome. J. Allergy Clin. Immunol. 130, 1440 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Moosig, F. et al. A vasculitis centre based management strategy leads to improved outcome in eosinophilic granulomatosis and polyangiitis (Churg–Strauss, EGPA): monocentric experiences in 150 patients. Ann. Rheum. Dis. 72, 1011–1017 (2013).

    Article  PubMed  Google Scholar 

  57. Khoury, P. et al. Serum biomarkers are similar in Churg–Strauss syndrome and hypereosinophilic syndrome. Allergy 67, 1149–1156 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Valent, P. et al. Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev. Hematol. 5, 157–176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mahr, A. et al. Eosinophilic granulomatosis with polyangiitis (Churg–Strauss): evolutions in classification, etiopathogenesis, assessment and management. Curr. Opin. Rheumatol. 26, 16–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Vaglio, A. et al. HLA-DRB4 as a genetic risk factor for Churg–Strauss syndrome. Arthritis Rheum. 56, 3159–3166 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Wenzel, S. E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18, 716–725 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Miranda, C., Busacker, A., Balzar, S., Trudeau, J. & Wenzel, S. E. Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. J. Allergy Clin. Immunol. 113, 101–108 (2004).

    Article  PubMed  Google Scholar 

  63. Nair, P. et al. Eosinophil peroxidase in sputum represents a unique biomarker of airway eosinophilia. Allergy 68, 1177–1184 (2013).

    CAS  PubMed  Google Scholar 

  64. Lie, J. T. Illustrated histopathologic classification criteria for selected vasculitis syndromes. American College of Rheumatology Subcommittee on Classification of Vasculitis. Arthritis Rheum. 33, 1074–1087 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Katzenstein, A. L. Diagnostic features and differential diagnosis of Churg–Strauss syndrome in the lung. A review. Am. J. Clin. Pathol. 114, 767–772 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Churg, A. Recent advances in the diagnosis of Churg–Strauss syndrome. Mod. Pathol. 14, 1284–1293 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Xiao, H. et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J. Clin. Invest. 110, 955–963 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salama, A. D. & Little, M. A. Animal models of antineutrophil cytoplasm antibody-associated vasculitis. Curr. Opin. Rheumatol. 24, 1–7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ishii, T. et al. Establishment of experimental eosinophilic vasculitis by IgE-mediated cutaneous reverse passive Arthus reaction. Am. J. Pathol. 174, 2225–2233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kiene, M. et al. Elevated interleukin-4 and interleukin-13 production by T cell lines from patients with Churg–Strauss syndrome. Arthritis Rheum. 44, 469–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Jakiela, B. et al. Increased production of IL-5 and dominant TH2-type response in airways of Churg–Strauss syndrome patients. Rheumatology (Oxford) 51, 1887–1893 (2012).

    Article  CAS  Google Scholar 

  72. Muschen, M. et al. Involvement of soluble CD95 in Churg–Strauss syndrome. Am. J. Pathol. 155, 915–925 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Terrier, B. et al. Interleukin-25: a cytokine linking eosinophils and adaptive immunity in Churg–Strauss syndrome. Blood 116, 4523–4531 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Brusselle, G. G., Maes, T. & Bracke, K. R. Eosinophils in the spotlight: eosinophilic airway inflammation in nonallergic asthma. Nat. Med. 19, 977–979 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Jakiela, B. et al. Both TH2 and TH17 responses are involved in the pathogenesis of Churg–Strauss syndrome. Clin. Exp. Rheumatol. 29 (Suppl. 64), S23–S34 (2011).

    PubMed  Google Scholar 

  76. Saito, H., Tsurikisawa, N., Tsuburai, T. & Akiyama, K. Involvement of regulatory T cells in the pathogenesis of Churg–Strauss syndrome. Int. Arch. Allergy Immunol. 146 (Suppl. 1), 73–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Tsurikisawa, N., Saito, H., Oshikata, C., Tsuburai, T. & Akiyama, K. Decreases in the numbers of peripheral blood regulatory T cells, and increases in the levels of memory and activated B cells, in patients with active eosinophilic granulomatosis and polyangiitis. J. Clin. Immunol. 33, 965–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Manger, B. J. et al. IgE-containing circulating immune complexes in Churg–Strauss vasculitis. Scand. J. Immunol. 21, 369–373 (1985).

    Article  CAS  PubMed  Google Scholar 

  79. Pepper, R. J. et al. Rituximab is effective in the treatment of refractory Churg–Strauss syndrome and is associated with diminished T-cell interleukin-5 production. Rheumatology (Oxford) 47, 1104–1105 (2008).

    Article  CAS  Google Scholar 

  80. Tomasson, G., Grayson, P. C., Mahr, A. D., Lavalley, M. & Merkel, P. A. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis—a meta-analysis. Rheumatology (Oxford) 51, 100–109 (2012).

    Article  CAS  Google Scholar 

  81. Vaglio, A. et al. IgG4 immune response in Churg–Strauss syndrome. Ann. Rheum. Dis. 71, 390–393 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Grayson, P. C. et al. Clinical value of commonly-measured laboratory tests in eosinophilic granulomatosis with polyangiitis (Churg–Strauss) [abstract #756]. Arthritis Rheum. 65 (Suppl. 10) S319 (2013).

    Google Scholar 

  83. Monach, P. A. Biomarkers in vasculitis. Curr. Opin. Rheumatol. 26, 24–30 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meziane, H., Maakel, M. L., Vachier, I., Bousquet, J. & Chanez, P. Sputum eosinophilia in Churg–Strauss syndrome. Respir. Med. 95, 799–801 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Cianchetti, S. et al. Are sputum ECP and eosinophils differently associated with clinical and functional findings of asthma? Clin. Exp. Allergy 44, 673–680 (2013).

    Article  CAS  Google Scholar 

  86. Guilpain, P. et al. Serum eosinophil cationic protein: a marker of disease activity in Churg–Strauss syndrome. Ann. N. Y. Acad. Sci. 1107, 392–399 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Polzer, K. et al. Eotaxin-3 is involved in Churg–Strauss syndrome—a serum marker closely correlating with disease activity. Rheumatology (Oxford) 47, 804–808 (2008).

    Article  CAS  Google Scholar 

  88. Zwerina, J. et al. Eotaxin-3 in Churg–Strauss syndrome: a clinical and immunogenetic study. Rheumatology (Oxford) 50, 1823–1827 (2011).

    Article  CAS  Google Scholar 

  89. Dallos, T. et al. CCL17/thymus and activation-related chemokine in Churg–Strauss syndrome. Arthritis Rheum. 62, 3496–3503 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Schmitt, W. H. et al. Churg–Strauss syndrome: serum markers of lymphocyte activation and endothelial damage. Arthritis Rheum. 41, 445–452 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Hauser, T. et al. The leucotriene receptor antagonist montelukast and the risk of Churg–Strauss syndrome: a case-crossover study. Thorax 63, 677–682 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Higashi, N. et al. Clinical features of asthmatic patients with increased urinary leukotriene E4 excretion (hyperleukotrienuria): involvement of chronic hyperplastic rhinosinusitis with nasal polyposis. J. Allergy Clin. Immunol. 113, 277–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Szczeklik, W. et al. 12-hydroxy-eicosatetraenoic acid (12-HETE): a biomarker of Churg–Strauss syndrome. Clin. Exp. Allergy 42, 513–522 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Mukhtyar, C. et al. EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann. Rheum. Dis. 68, 310–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Jayne, D. et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N. Engl. J. Med. 349, 36–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. De Groot, K. et al. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 52, 2461–2469 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fulkerson, P. C. & Rothenberg, M. E. Targeting eosinophils in allergy, inflammation and beyond. Nat. Rev. Drug Discov. 12, 117–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Guillevin, L. et al. Prognostic factors in polyarteritis nodosa and Churg–Strauss syndrome. A prospective study in 342 patients. Medicine (Baltimore) 75, 17–28 (1996).

    Article  CAS  Google Scholar 

  100. Kikkawa, Y. et al. Interferon-α inhibits airway eosinophilia and hyperresponsiveness in an animal asthma model [corrected]. Asia Pac. Allergy 2, 256–263 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Metzler, C., Csernok, E., Gross, W. L. & Hellmich, B. Interferon-α for maintenance of remission in Churg–Strauss syndrome: a long-term observational study. Clin. Exp. Rheumatol. 28, 24–30 (2010).

    PubMed  Google Scholar 

  102. Thiel, J., Hassler, F., Salzer, U., Voll, R. E. & Venhoff, N. Rituximab in the treatment of refractory or relapsing eosinophilic granulomatosis with polyangiitis (Churg–Strauss syndrome). Arthritis Res. Ther. 15, R133 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Tsurikisawa, N. et al. Treatment of Churg–Strauss syndrome with high-dose intravenous immunoglobulin. Ann. Allergy Asthma Immunol. 92, 80–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Druilhe, A., Letuve, S. & Pretolani, M. Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis 8, 481–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Corren, J. Inhibition of interleukin-5 for the treatment of eosinophilic diseases. Discov. Med. 13, 305–312 (2012).

    PubMed  Google Scholar 

  106. Kim, S., Marigowda, G., Oren, E., Israel, E. & Wechsler, M. E. Mepolizumab as a steroid-sparing treatment option in patients with Churg–Strauss syndrome. J. Allergy Clin. Immunol. 125, 1336–1343 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Herrmann, K., Gross, W. L. & Moosig, F. Extended follow-up after stopping mepolizumab in relapsing/refractory Churg–Strauss syndrome. Clin. Exp. Rheumatol. 30 (Suppl. 70), S62–S65 (2012).

    PubMed  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  109. Balding, C. E., Howie, A. J., Drake-Lee, A. B. & Savage, C. O. TH2 dominance in nasal mucosa in patients with Wegener's granulomatosis. Clin. Exp. Immunol. 125, 332–339 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Choopong, P. et al. Eosinophil activation in Wegener's granulomatosis: a harbinger of disease progression? Ocul. Immunol. Inflamm. 13, 439–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Csernok, E. et al. Cytokine profiles in Wegener's granulomatosis: predominance of type 1 (TH1) in the granulomatous inflammation. Arthritis Rheum. 42, 742–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Krupsky, M., Landau, Z., Lifschitz-Mercer, B. & Resnitzky, P. Wegener's granulomatosis with peripheral eosinophilia. Atypical variant of a classic disease. Chest 104, 1290–1292 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Potter, M. B., Fincher, R. K. & Finger, D. R. Eosinophilia in Wegener's granulomatosis. Chest 116, 1480–1483 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Schmitt, W. H., Linder, R., Reinhold-Keller, E. & Gross, W. L. Improved differentiation between Churg–Strauss syndrome and Wegener's granulomatosis by an artificial neural network. Arthritis Rheum. 44, 1887–1896 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Schnabel, A., Csernok, E., Braun, J. & Gross, W. L. Activation of neutrophils, eosinophils, and lymphocytes in the lower respiratory tract in Wegener's granulomatosis. Am. J. Respir. Crit. Care Med. 161, 399–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Kawasaki, T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children [Japanese]. Arerugi 16, 178–222 (1967).

    CAS  PubMed  Google Scholar 

  117. Terai, M. et al. Peripheral blood eosinophilia and eosinophil accumulation in coronary microvessels in acute Kawasaki disease. Pediatr. Infect. Dis. J. 21, 777–781 (2002).

    Article  PubMed  Google Scholar 

  118. Oner, T. et al. An observational study on peripheral blood eosinophilia in incomplete Kawasaki disease. Anadolu Kardiyol. Derg. 12, 160–164 (2012).

    PubMed  Google Scholar 

  119. Bahrami, S., Malone, J. C., Webb, K. G. & Callen, J. P. Tissue eosinophilia as an indicator of drug-induced cutaneous small-vessel vasculitis. Arch. Dermatol. 142, 155–161 (2006).

    Article  PubMed  Google Scholar 

  120. Abu-Ghazaleh, R. I. et al. Eosinophil granule proteins in peripheral blood granulocytes. J. Leukoc. Biol. 52, 611–618 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Savage, C. O. Pathogenesis of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis. Clin. Exp. Immunol. 164 (Suppl. 1), 23–26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in whole or in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH. The authors thank C. R. Lee for assistance with the preparation of Figure 3.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article, made a substantial contribution to discussion of content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Paneez Khoury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoury, P., Grayson, P. & Klion, A. Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nat Rev Rheumatol 10, 474–483 (2014). https://doi.org/10.1038/nrrheum.2014.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing