Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting of proangiogenic signalling pathways in chronic inflammation

Key Points

  • In chronic inflammatory diseases, angiogenesis enables increased delivery of oxygen and nutrients to immune cell populations accumulating in inflamed tissues, and contributes to further immune cell infiltration

  • Angiogenesis is driven not only by hypoxia, but also by proinflammatory mediators produced by immune and stromal cells

  • Many intracellular signalling pathways downstream of these proinflammatory stimuli contribute to various cellular processes involved in angiogenesis

  • Targeting these signal transduction pathways to inhibit neovascularization has been successfully exploited in several cancers, and might also prove beneficial in the treatment of chronic inflammatory diseases

Abstract

Angiogenesis is de novo capillary outgrowth from pre-existing blood vessels. This process not only is crucial for normal development, but also has an important role in supplying oxygen and nutrients to inflamed tissues, as well as in facilitating the migration of inflammatory cells to the synovium in rheumatoid arthritis, spondyloarthritis and other systemic autoimmune diseases. Neovascularization is dependent on the balance of proangiogenic and antiangiogenic mediators, including growth factors, cytokines, chemokines, cell adhesion molecules and matrix metalloproteinases. This Review describes the various intracellular signalling pathways that govern these angiogenic processes and discusses potential approaches to interfere with pathological angiogenesis, and thereby ameliorate inflammatory disease, by targeting these pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of proangiogenic processes in chronic inflammation.
Figure 2: Inflammatory signal transduction pathways involved in (pathological) angiogenesis.
Figure 3: S1P and Notch signal transduction pathways involved in angiogenesis.

Similar content being viewed by others

References

  1. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Szekanecz, Z., Besenyei, T., Szentpetery, A. & Koch, A. E. Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr. Opin. Rheumatol. 22, 299–306 (2011).

    Article  CAS  Google Scholar 

  3. Szekanecz, Z. & Koch, A. E. Mechanisms of disease: angiogenesis in inflammatory diseases. Nat. Clin. Pract. Rheumatol. 3, 635–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Madri, J. A. & Williams, S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell. Biol. 97, 153–165 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Elshabrawy, H. A. et al. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis http://dx.doi.org/10.1007/s10456-015-9477-2.

  6. Marrelli, A. et al. Angiogenesis in rheumatoid arthritis: a disease specific process or a common response to chronic inflammation? Autoimmun. Rev. 10, 595–598 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Stapor, P. C., Sweat, R. S., Dashti, D. C., Betancourt, A. M. & Murfee, W. L. Pericyte dynamics during angiogenesis: new insights from new identities. J. Vasc. Res. 51, 163–174 (2014).

    Article  PubMed  Google Scholar 

  8. Cotran, R. S. & Pober, J. S. Cytokine–endothelial interactions in inflammation, immunity, and vascular injury. J. Am. Soc. Nephrol. 1, 225–235 (1990).

    CAS  PubMed  Google Scholar 

  9. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ng, C. T. et al. Synovial tissue hypoxia and inflammation in vivo. Ann. Rheum. Dis. 69, 1389–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Taylor, P. C. & Sivakumar, B. Hypoxia and angiogenesis in rheumatoid arthritis. Curr. Opin. Rheumatol. 17, 293–298 (2005).

    Article  PubMed  Google Scholar 

  13. Veale, D. J. & Fearon, U. Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract. Res. Clin. Rheumatol. 20, 941–947 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Maracle, C. X. & Tas, S. W. Inhibitors of angiogenesis: ready for prime time? Best Pract. Res. Clin. Rheumatol. 28, 637–649 (2014).

    Article  PubMed  Google Scholar 

  15. Kanakaraj, P. et al. Simultaneous targeting of TNF and Ang2 with a novel bispecific antibody enhances efficacy in an in vivo model of arthritis. MAbs 4, 600–613 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Asahara, T. et al. Simultaneous targeting of TNF and Ang2 with a novel bispecific antibody enhances efficacy in an in vivo model of arthritis. Circ. Res. 83, 233–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Izquierdo, E. et al. Immature blood vessels in rheumatoid synovium are selectively depleted in response to anti-TNF therapy. PLoS ONE 4, e8131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rico, M. C., Rough, J. J., Del Carpio-Cano, F. E., Kunapuli, S. P. & DeLa Cadena, R. A. The axis of thrombospondin-1, transforming growth factor β and connective tissue growth factor: an emerging therapeutic target in rheumatoid arthritis. Curr. Vasc. Pharmacol. 8, 338–343 (2009).

    Article  Google Scholar 

  19. Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin αVβ3 for angiogenesis. Science 264, 569–571 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Shahrara, S., Castro-Rueda, H. P., Haines, G. K. & Koch, A. E. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res. Ther. 9, R112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilder, R. L. Integrin αVβ3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann. Rheum. Dis. 61 (Suppl. 2), ii96–ii99 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hiromatsu, Y. & Toda, S. Mast cells and angiogenesis. Microsc. Res. Tech 60, 64–69 (2003).

    Article  PubMed  Google Scholar 

  23. Rabquer, B. J. et al. Junctional adhesion molecule-C is a soluble mediator of angiogenesis. J. Immunol. 185, 1777–1785 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Yoon, S. O., Park, S. J., Yun, C. H. & Chung, A. S. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J. Biochem. Mol. Biol. 36, 128–137 (2003).

    CAS  PubMed  Google Scholar 

  25. Benelli, R., Lorusso, G., Albini, A. & Noonan, D. M. Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr. Pharm. Des. 12, 3101–3115 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, S. et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor α-dependent angiogenesis. Mol. Cell. Biol. 17, 4015–4023 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leibovich, S. J. et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329, 630–632 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Hangai, M. et al. Sequential induction of angiogenic growth factors by TNF-α in choroidal endothelial cells. J. Neuroimmunol. 171, 45–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Strieter, R. M. et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27348–27357 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Salcedo, R. et al. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1α. Am. J. Pathol. 154, 1125–1135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petit, I., Jin, D. & Rafii, S. The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 28, 299–307 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isozaki, T. et al. Evidence that CXCL16 is a potent mediator of angiogenesis and is involved in endothelial progenitor cell chemotaxis: studies in mice with K/B × N serum-induced arthritis. Arthritis Rheum. 65, 1736–1746 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Owen, J. L. & Mohamadzadeh, M. Macrophages and chemokines as mediators of angiogenesis. Front. Physiol. 4, 159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deng, J. et al. IFNγ-responsiveness of endothelial cells leads to efficient angiostasis in tumours involving down-regulation of Dll4. J. Pathol. 233, 170–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Qin, Z. et al. A critical requirement of interferon γ-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res. 63, 4095–5100 (2003).

    CAS  PubMed  Google Scholar 

  37. Szekanecz, Z., Pakozdi, A., Szentpetery, A., Besenyei, T. & Koch, A. E. Chemokines and angiogenesis in rheumatoid arthritis. Front. Biosci. (Elite Ed.) 1, 44–51 (2009).

    Google Scholar 

  38. Szekanecz, Z. & Koch, A. E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol. 19, 289–295 (2007).

    Article  PubMed  Google Scholar 

  39. Szekanecz, Z., Vegvari, A., Szabo, Z. & Koch, A. E. Chemokines and chemokine receptors in arthritis. Front. Biosci. (Schol. Ed.) 2, 153–167 (2010).

    Article  Google Scholar 

  40. Ghosh, S. & Hayden, M. S. Celebrating 25 years of NF-κB research. Immunol. Rev. 246, 5–13 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Noort, A. R. et al. NF-κB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J. Pathol. 234, 375–385 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morrison, D. K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol. 4 a011254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McKay, M. M. & Morrison, D. K. Integrating signals from RTKs to ERK/MAPK. Oncogene 26, 3113–3121 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Asahara, H. et al. Direct evidence of high DNA binding activity of transcription factor AP-1 in rheumatoid arthritis synovium. Arthritis Rheum. 40, 912–918 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Amin, M. A. et al. Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis Rheum. 56, 1787–1797 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. De Cesaris, P. et al. Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor α leads to intercellular adhesion molecule-1 expression. J. Biol. Chem. 274, 28978–28982 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Scaldaferri, F. et al. The role of MAPK in governing lymphocyte adhesion to and migration across the microvasculature in inflammatory bowel disease. Eur. J. Immunol. 39, 290–300 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Schirbel, A. et al. Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology 144, 613–623 e9 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Wernert, N. et al. The Ets 1 transcription factor is upregulated during inflammatory angiogenesis in rheumatoid arthritis. J. Mol. Med. 80, 258–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Forough, R. et al. Transcription factor Ets-1 regulates fibroblast growth factor-1-mediated angiogenesis in vivo: role of Ets-1 in the regulation of the PI3K/AKT/MMP-1 pathway. J. Vasc. Res. 43, 327–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Russell, L. & Garrett-Sinha, L. A. Transcription factor Ets-1 in cytokine and chemokine gene regulation. Cytokine 51, 217–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Stamatovic, S. M., Keep, R. F., Mostarica-Stojkovic, M. & Andjelkovic, A. V. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J. Immunol. 177, 2651–2661 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, G. Q. et al. PI3 kinase/Akt/HIF-1α pathway is associated with hypoxia-induced epithelial-mesenchymal transition in fibroblast-like synoviocytes of rheumatoid arthritis. Mol. Cell. Biochem. 372, 221–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Kumar, P., Amin, M. A., Harlow, L. A., Polverini, P. J. & Koch, A. E. Src and phosphatidylinositol 3-kinase mediate soluble E-selectin-induced angiogenesis. Blood 101, 3960–3968 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Amin, M. A. et al. Interleukin 18 induces angiogenesis in vitro and in vivo via Src and JNK kinases. Ann. Rheum. Dis. 69, 2204–2212 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, H. G. et al. Regulation of tumor necrosis factor α-mediated apoptosis of rheumatoid arthritis synovial fibroblasts by the protein kinase Akt. Arthritis Rheum. 44, 1555–1567 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Yu, W. et al. NKX2–3 transcriptional regulation of endothelin-1 and VEGF signaling in human intestinal microvascular endothelial cells. PLoS ONE 6, e20454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, J. & Agarwal, S. Mechanical signals activate vascular endothelial growth factor receptor-2 to upregulate endothelial cell proliferation during inflammation. J. Immunol. 185, 1215–1221 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. O'Shea, J. J. & Murray, P. J. Cytokine signaling modules in inflammatory responses. Immunity 28, 477–487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walker, J. G. et al. Changes in synovial tissue JAK-STAT expression in rheumatoid arthritis in response to successful DMARD treatment. Ann. Rheum. Dis. 65, 1558–1564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Walker, J. G. et al. Expression of JAK3, STAT1, STAT4, and STAT6 in inflammatory arthritis: unique JAK3 and STAT4 expression in dendritic cells in seropositive rheumatoid arthritis. Ann. Rheum. Dis. 65, 149–156 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. van der Pouw Kraan, T. C. et al. Rheumatoid arthritis is a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum. 48, 2132–2145 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Sengupta, T. K., Chen, A., Zhong, Z., Darnell, J. E. Jr & Ivashkiv, L. B. Activation of monocyte effector genes and STAT family transcription factors by inflammatory synovial fluid is independent of interferon γ. J. Exp. Med. 181, 1015–1025 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Yokota, A. et al. Preferential and persistent activation of the STAT1 pathway in rheumatoid synovial fluid cells. J. Rheumatol. 28, 1952–1959 (2001).

    CAS  PubMed  Google Scholar 

  68. Fang, K., Zhang, S., Glawe, J., Grisham, M. B. & Kevil, C. G. Temporal genome expression profile analysis during T-cell-mediated colitis: identification of novel targets and pathways. Inflamm. Bowel. Dis. 18, 1411–1423 (2012).

    Article  PubMed  Google Scholar 

  69. Valdembri, D., Serini, G., Vacca, A., Ribatti, D. & Bussolino, F. In vivo activation of JAK2/STAT-3 pathway during angiogenesis induced by GM-CSF. FASEB J. 16, 225–227 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Infusino, G. A. & Jacobson, J. R. Endothelial FAK as a therapeutic target in disease. Microvasc. Res. 83, 89–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Sulzmaier, F. J., Jean, C. & Schlaepfer, D. D. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 14, 598–610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tavora, B. et al. Endothelial FAK is required for tumour angiogenesis. EMBO Mol. Med. 2, 516–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schlessinger, J. New roles for Src kinases in control of cell survival and angiogenesis. Cell 100, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Hu, P. F., Chen, Y., Cai, P. F., Jiang, L. F. & Wu, L. D. Sphingosine-1-phosphate: a potential therapeutic target for rheumatoid arthritis. Mol. Biol. Rep. 38, 4225–4230 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Lai, W. Q. et al. Anti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis. J. Immunol. 181, 8010–8017 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Limaye, V. et al. Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells. Cell Mol. Biol. Lett. 14, 424–441 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kitano, M. et al. Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: regulation of synovial proliferation and inflammatory gene expression. Arthritis Rheum. 54, 742–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Sekiguchi, M. et al. Role of sphingosine 1-phosphate in the pathogenesis of Sjögren's syndrome. J. Immunol. 180, 1921–1928 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Nussbaum, C. et al. Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial P-selectin. Nat. Commun. 6, 6416 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Masuko, K. et al. Sphingosine-1-phosphate modulates expression of vascular endothelial growth factor in human articular chondrocytes: a possible new role in arthritis. Int. J. Rheum. Dis. 15, 366–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Gao, W. et al. Notch signalling pathways mediate synovial angiogenesis in response to vascular endothelial growth factor and angiopoietin 2. Ann. Rheum. Dis. 72, 1080–1088 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Gao, W. et al. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis. Arthritis Rheum. 64, 2104–2113 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Dong, Y. et al. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling. PLoS ONE 9, e113830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Iso, T., Hamamori, Y. & Kedes, L. Notch signaling in vascular development. Arterioscler. Thromb. Vasc. Biol. 23, 543–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Tamai, H. et al. Possible involvement of Notch signaling in the pathogenesis of Buerger's disease. Surg. Today 44, 307–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Furuya, K., Kaku, Y., Yoshida, K., Joh, K. & Kurosaka, D. Therapeutic effects of sunitinib, one of the anti-angiogenetic drugs, in a murine arthritis. Mod. Rheumatol. 24, 487–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Li, H. et al. Pazopanib, a receptor tyrosine kinase inhibitor, suppresses tumor growth through angiogenesis in dedifferentiated liposarcoma xenograft models. Transl. Oncol. 7, 665–671 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Xie, M., He, C. S., Huang, J. K. & Lin, Q. Z. Phase II study of pazopanib as second-line treatment after sunitinib in patients with metastatic renal cell carcinoma: a Southern China Urology Cancer Consortium Trial. Eur. J. Cancer 51, 595–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Kendra, K. L. et al. A multicenter phase I study of pazopanib in combination with paclitaxel in first-line treatment of patients with advanced solid tumors. Mol. Cancer Ther. 14, 461–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Bukowski, R. M., Yasothan, U. & Kirkpatrick, P. Pazopanib. Nat. Rev. Drug Discov. 9, 17–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Panek, R. L. et al. In vitro biological characterization and antiangiogenic effects of PD 166866, a selective inhibitor of the FGF-1 receptor tyrosine kinase. J. Pharmacol. Exp. Ther. 286, 569–577 (1998).

    CAS  PubMed  Google Scholar 

  92. Kwak, J. H., Jung, J. K. & Lee, H. Nuclear factor-κB inhibitors; a patent review (2006–2010). Expert Opin. Ther. Pat. 21, 1897–1910 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Tas, S. W. et al. Local treatment with the selective IκB kinase β inhibitor NEMO-binding domain peptide ameliorates synovial inflammation. Arthritis Res. Ther. 8, R86 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tas, S. W. et al. Amelioration of arthritis by intraarticular dominant negative IKK β gene therapy using adeno-associated virus type 5. Hum. Gene Ther. 17, 821–832 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Sehnert, B. et al. NF-κB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-κB in immune-mediated diseases. Proc. Natl Acad. Sci. USA 110, 16556–16561 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Choe, J. Y., Lee, S. J., Park, S. H. & Kim, S. K. Tacrolimus (FK506) inhibits interleukin-1β-induced angiopoietin-1, Tie-2 receptor, and vascular endothelial growth factor through down-regulation of JNK and p38 pathway in human rheumatoid fibroblast-like synoviocytes. Joint Bone Spine 79, 137–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Ohori, M., Takeuchi, M., Maruki, R., Nakajima, H. & Miyake, H. FR180204, a novel and selective inhibitor of extracellular signal-regulated kinase, ameliorates collagen-induced arthritis in mice. Naunyn Schmiedebergs Arch, Pharmacol, 374, 311–316 (2007).

    Article  CAS  Google Scholar 

  98. Ennis, B. W. et al. Inhibition of tumor growth, angiogenesis, and tumor cell proliferation by a small molecule inhibitor of c-Jun N-terminal kinase. J. Pharmacol. Exp. Ther. 313, 325–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Han, Z. et al. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin. Invest. 108, 73–81 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tate, C. M. et al. LY2228820 dimesylate, a selective inhibitor of p38 mitogen-activated protein kinase, reduces angiogenic endothelial cord formation in vitro and in vivo. J. Biol. Chem. 288, 6743–6753 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hommes, D. et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease. Gastroenterology 122, 7–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Hammaker, D. & Firestein, G. S. “Go upstream, young man”: lessons learned from the p38 saga. Ann. Rheum. Dis. 69 (Suppl. 1), i77–i82 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Cohen, S. B. et al. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum. 60, 335–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Dotan, I. et al. A randomised placebo-controlled multicentre trial of intravenous semapimod HCl for moderate to severe Crohn's disease. Gut 59, 760–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Allen, L. F., Sebolt-Leopold, J. & Meyer, M. B. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin. Oncol. 30, 105–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Henderson, Y. C., Chen, Y., Frederick, M. J., Lai, S. Y. & Clayman, G. L. MEK inhibitor PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Mol. Cancer Ther. 9, 1968–1976 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Matulonis, U. et al. Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial carcinoma. Gynecol. Oncol. 136, 246–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Oikawa, T. & Shimamura, M. Potent inhibition of angiogenesis by wortmannin, a fungal metabolite. Eur. J. Pharmacol. 318, 93–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Markman, B. et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of the oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in patients with advanced solid tumors. Ann. Oncol. 23, 2399–2408 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Papadopoulos, K. P. et al. Efficacy, safety, pharmacokinetics and pharmacodynamics of SAR245409 (voxtalisib, XL765), an orally administered phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor: a phase 1 expansion cohort in patients with relapsed or refractory lymphoma. Leuk. Lymphoma 56, 1763–1770 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Xing, X. et al. PP242 suppresses cell proliferation, metastasis, and angiogenesis of gastric cancer through inhibition of the PI3K/AKT/mTOR pathway. Anticancer Drugs 25, 1129–1140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van Vollenhoven, R. F. Small molecular compounds in development for rheumatoid arthritis. Curr. Opin. Rheumatol. 25, 391–397 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. van Vollenhoven, R. F. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Burmester, G. R. et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381, 451–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. van der Heijde, D. et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 65, 559–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Keystone, E. C. et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann. Rheum. Dis. 74, 333–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Xin, H. et al. Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res. 71, 6601–6610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cabrita, M. A. et al. Focal adhesion kinase inhibitors are potent anti-angiogenic agents. Mol. Oncol. 5, 517–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kurenova, E. et al. A FAK scaffold inhibitor disrupts FAK and VEGFR-3 signaling and blocks melanoma growth by targeting both tumor and endothelial cells. Cell Cycle 13, 2542–2553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Golubovskaya, V. M. Targeting FAK in human cancer: from finding to first clinical trials. Front. Biosci. (Landmark Ed.) 19, 687–706 (2014).

    Article  CAS  Google Scholar 

  123. Ozanne, J., Prescott, A. R. & Clark, K. The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases. Biochem. J. 465, 271–279 (2014).

    Article  CAS  Google Scholar 

  124. Sidibe, A. et al. Soluble VE-cadherin in rheumatoid arthritis patients correlates with disease activity: evidence for tumor necrosis factor α-induced VE-cadherin cleavage. Arthritis Rheum. 64, 77–87 (2011).

    Article  CAS  Google Scholar 

  125. Sun, C. et al. ADAM15 regulates endothelial permeability and neutrophil migration via Src/ERK1/2 signalling. Cardiovasc. Res. 87, 348–355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shin, K. O. et al. Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells. Arch. Pharm. Res. 37, 1183–1192 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Gustin, D. J. et al. Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg. Med. Chem. Lett. 23, 4608–4616 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Fouladi, M. et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a Pediatric Brain Tumor Consortium study. J. Clin. Oncol. 29, 3529–3534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Diaz-Padilla, I. et al. A phase II study of single-agent RO4929097, a γ-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: a study of the Princess Margaret, Chicago and California phase II consortia. Gynecol. Oncol. 137, 216–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Diaz-Padilla, I. et al. A phase Ib combination study of RO4929097, a γ-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Invest. New Drugs 31, 1182–1191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Espinoza, I. & Miele, L. Notch inhibitors for cancer treatment. Pharmacol.Ther. 139, 95–110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. De Jesus-Acosta, A. et al. A phase II study of the γ secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Invest. New Drugs 32, 739–745 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Richter, S. et al. A phase I study of the oral γ secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575). Invest. New Drugs 32, 243–249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hayashi, I. et al. Neutralization of the γ-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene 31, 787–798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Noort, A. R., Tak, P. P. & Tas, S. W. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res. Ther. 17, 15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Weinblatt, M. et al. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: a one-year randomized, placebo-controlled study. Arthritis Rheum. 54, 2807–2816 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Zhu, Z. et al. Evaluation of synovial angiogenesis in patients with rheumatoid arthritis using 68Ga-PRGD2 PET/CT: a prospective proof-of-concept cohort study. Ann. Rheum. Dis. 73, 1269–1272 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. US National Library of Medicine. Clinicaltrials.gov[online], (2015).

Download references

Acknowledgements

S.W.T.'s research is supported by a VENI grant and a Clinical Fellowship from the Netherlands Organization for Scientific Research (NWO/ZonMw), and grants from the Dutch Arthritis Foundation. C.X.M.'s research is supported by a research grant from the Academic Medical Center/University of Amsterdam. Z.S.'s research is supported by grant TÁMOP-4.2.2.A-11/1/KONV-2012-0031 for projects co-financed by the European Union and the European Social Fund.

Author information

Authors and Affiliations

Authors

Contributions

S.W.T. and C.X.M. contributed equally to this article. All authors (S.W.T., C.X.M., E.B., Z.S.) researched the data for the article and wrote the manuscript. S.W.T., E.B. and Z.S. made substantial contributions to discussion of its content. S.W.T. and Z.S. also undertook review and/or editing of manuscript before submission.

Corresponding author

Correspondence to Sander W. Tas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tas, S., Maracle, C., Balogh, E. et al. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol 12, 111–122 (2016). https://doi.org/10.1038/nrrheum.2015.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing