Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insight into rheumatological cause and effect through the use of Mendelian randomization

An Erratum to this article was published on 22 February 2017

This article has been updated

Key Points

  • Mendelian randomization uses genetic variants to test the causality of a relationship between an exposure and an outcome

  • Mendelian randomization is not affected by the confounding inherent in observational studies but it does rely on several assumptions, which can be hard to test

  • Mendelian randomization can provide a cost-effective substitute for clinical trials that would be expensive, or logistically or ethically challenging

  • In rheumatoid arthritis (RA), Mendelian randomization has provided evidence for a protective effect of IL-1 receptor antagonism, and for relationships between vitamin D status, disease outcome and response to therapy

  • Mendelian randomization can provide evidence that relationships suggested by observation are not causal; for example, it suggests IgG N-glycosylation is a biomarker of RA rather than an agent of disease

Abstract

Establishing causality of risk factors is important to determine the pathogenetic mechanisms underlying rheumatic diseases, and can facilitate the design of interventions to improve care for affected patients. The presence of unmeasured confounders, as well as reverse causation, is a challenge to the assignment of causality in observational studies. Alleles for genetic variants are randomly inherited at meiosis. Mendelian randomization analysis uses these genetic variants to test whether a particular risk factor is causal for a disease outcome. In this Review of the Mendelian randomization technique, we discuss published results and potential applications in rheumatology, as well as the general clinical utility and limitations of the approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the design of a Mendelian randomization study and a randomized controlled trial.
Figure 2: An illustration of the two-stage least squares method of Mendelian randomization20.
Figure 3: Mendelian randomization suggests that the observed relationship between serum urate and serum creatinine levels is not a direct effect of urate.
Figure 4: Mendelian randomization suggests that the observed relationship between serum urate level and ischaemic heart disease is not a direct effect of urate.
Figure 5: Mendelian randomization studies of the association between fat mass and serum urate level.

Similar content being viewed by others

Change history

  • 22 February 2017

    In the originally published version of the above Review, in the left-hand panel of Figure 2b the residuals were represented by horizontal rather than vertical double-headed arrows between the individual data points and the regression line, and in the right-hand panel the labels for the axes were inverted; in the legend for Figure 2b and on page 487 of the article where Figure 2 is cited, the description of the two-stage least squares method was inaccurate; and owing to an editorial oversight, a sentence on page 488 mistakenly referred to the occurrence of “reverse causality” instead of “inverse causality”. These errors have been corrected in the online version of the article. Also, in the discussion of the Wald method on page 488, the sentence “However, estimating the effect size of an exposure on the outcome is not possible” has been deleted to avoid ambiguity.

References

  1. Di Giuseppe, D., Discacciata, A., Orsini, N. & Wolk, A. Cigarette smoking and risk of rheumatoid arthritis: a dose-response meta-analysis. Arthritis Res. Ther. 16, R61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh, J. A., Reddy, S. G. & Kundukulam, J. Risk factors for gout and prevention: a systematic review of the literature. Curr. Opin. Rheumatol. 23, 192–202 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Campion, E. W., Glynn, R. J. & DeLabry, L. O. Asymptomatic hyperuricemia. Risks Consequences Normative Aging Study. Am. J. Med. 82, 421–426 (1987).

    CAS  PubMed  Google Scholar 

  4. Batt, C. et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann. Rheum. Dis. 73, 2101–2106 (2014).

    Article  PubMed  Google Scholar 

  5. Vartanian, L. R., Schwartz, M. B. & Brownell, K. D. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am. J. Pub. Health. 97, 667–675 (2007).

    Article  Google Scholar 

  6. Choi, J. W., Ford, E. S., Gao, X. & Choi, H. K. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 59, 109–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, G. D. & Ebrahim, S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article  PubMed  Google Scholar 

  8. Davey Smith, G. & Ebrahim, S. What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ 330, 1076–1079 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berry, D. J., Vimaleswaran, K. S., Whittaker, J. C., Hingorani, A. D. & Hyppönen, E. Evaluation of genetic markers as instruments for Mendelian randomization studies on vitamin D. PLoS ONE 7, e37465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boef, A. G., Dekkers, O. M. & le Cessie, S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int. J. Epidemiol. 44, 496–511 (2015).

    Article  PubMed  Google Scholar 

  11. Kang, D. H. & Chen, W. Uric acid and chronic kidney disease: new understanding of an old problem. Semin. Nephrol. 31, 447–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Krishnan, E. Reduced glomerular function and prevalence of gout: NHANES 2009–10. PLoS ONE 7, e50046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weiner, D. E. et al. Uric acid and incident kidney disease in the community. J. Am. Soc. Nephrol. 19, 1204–1211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pierce, B. L., Ahsan, H. & VanderWeele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40, 740–752 (2011).

    Article  PubMed  Google Scholar 

  15. VanderWeele, T. J., Tchetgen Tchetgen, E. J., Cornelis, M. & Kraft, P. Methodological challenges in Mendelian randomization. Epidemiology 25, 427–435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baum, C. F., Schaffer, M. E. & Stillman, S. Instrumental variables and GMM: estimation and testing. Stata J. 3, 1–31 (2003).

    Article  Google Scholar 

  17. Hausman, J. A. Specification tests in econometrics. Econometrica 46, 1251–1271 (1978).

    Article  Google Scholar 

  18. Burgess, S., Dudbridge, F. & Thompson, S. G. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat. Med. 35, 1880–1906 (2016).

    Article  PubMed  Google Scholar 

  19. Burgess, S. & Thompson, S. G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 755–764 (2011).

    Article  PubMed  Google Scholar 

  20. Hughes, K., Flynn, T., de Zoysa, J., Dalbeth, N. & Merriman, T. R. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int. 85, 344–351 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Davey Smith, G. & Ebrahim, S. in Biosocial Surveys: Current Insight and Future Promise (eds Vaupal, J. W., Weinstein, M. & Wachter, K. W.) 336–366 (The National Academies Press, 2008).

    Google Scholar 

  22. Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol. 43, 922–929 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Evans, D. M. & Davey Smith, G. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Ann. Rev. Genom. Hum. Genet. 16, 327–350 (2015).

    Article  CAS  Google Scholar 

  24. Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

    Article  PubMed  Google Scholar 

  25. Palmer, T. M. et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 21, 223–242 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kottgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Köttgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Orho-Melander, M. et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57, 3112–3121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phipps-Green, A. J. et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann. Rheum. Dis. 75, 124–130 (2016).

    CAS  PubMed  Google Scholar 

  30. Viatte, S. et al. The role of genetic polymorphisms regulating vitamin D levels in rheumatoid arthritis outcome: a Mendelian randomisation approach. Ann. Rheum. Dis. 73, 1430–1433 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Yarwood, A. et al. Testing the role of vitamin D in response to antitumour necrosis factor α therapy in a UK cohort: a Mendelian randomisation approach. Ann. Rheum. Dis. 73, 938–940 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Yarwood, A. et al. Loci associated with N-glycosylation of human IgG are not associated with rheumatoid arthritis: a Mendelian randomisation study. Ann. Rheum. Dis. 75, 317–320 (2016).

    Article  PubMed  Google Scholar 

  34. Lauc, G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Interleukin 1 Genetics Consortium. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 3, 243–253 (2015).

  36. Calvo, M. S. The effects of high phosphorous intake on calcium homeostasis. Adv. Nutr. Res. 9, 183–207 (1994).

    CAS  PubMed  Google Scholar 

  37. Pekkinen, M. et al. FGF23 gene variation and its association with phosphate homeostasis and bone mineral density in Finnish children and adolescents. Bone 71, 124–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Keenan, T. et al. Causal assessment of serum urate levels in cardiometabolic diseases through a Mendelian randomization study. J. Am. Coll. Cardiol. 67, 407–416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. White, J. et al. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 4, 327–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burgess, S., Daniel, R. M., Butterworth, A. S. & Thompson, S. G. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 44, 484–495 (2015).

    Article  PubMed  Google Scholar 

  41. Lyngdoh, T. et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS ONE 7, e39321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oikonen, M. et al. Associations between serum uric acid and markers of subclinical atherosclerosis in young adults. The cardiovascular risk in Young Finns study. Atherosclerosis 223, 497–503 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Palmer, T. M. et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ 347, f4262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rasheed, H., Hughes, K., Flynn, T. J. & Merriman, T. R. Mendelian randomization provides no evidence for a causal role of serum urate in increasing serum triglyceride levels. Circ. Cardiovasc. Genet. 7, 830–837 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson, R. J., Merriman, T. & Lanaspa, M. A. Causal or noncausal relationship of uric acid with diabetes. Diabetes 64, 2720–2722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Merriman, T. R. An update on the genetic architecture of hyperuricemia and gout. Arthritis Res. Ther. 17, 98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dehghan, A. et al. Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation. 123, 731–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ellis, J. et al. Large multiethnic candidate gene study for C-reactive protein levels: identification of a novel association at CD36 in African Americans. Hum. Genet. 133, 985–995 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ganesh, S. K. et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum. Mol. Genet. 22, 1663–1678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baker, J. F. et al. Weight loss, the obesity paradox, and the risk of death in rheumatoid arthritis. Arthritis Rheumatol. 67, 1711–1717 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. McCaffery, J. M. et al. Human cardiovascular disease IBC chip-wide association with weight loss and weight regain in the look AHEAD trial. Hum. Hered. 75, 160–174 (2013).

    Article  PubMed  Google Scholar 

  52. IL6R Genetics Consortium Emerging Risk Factors Collaboration et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

  53. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

  54. Goicoechea, M. et al. Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am. J. Kidney Dis. 65, 543–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Spitsin, S., Hooper, D. C., Mikheeva, T. & Koprowski, H. Uric acid levels in patients with multiple sclerosis: analysis in mono- and dizygotic twins. Mult. Scler. 7, 165–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Euser, S. M., Hofman, A., Westendorp, R. G. & Breteler, M. M. Serum uric acid and cognitive function and dementia. Brain 132, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Schretlen, D. J. et al. Serum uric acid and cognitive function in community-dwelling older adults. Neuropsychology 21, 136–140 (2007).

    Article  PubMed  Google Scholar 

  58. Di Giuseppe, D., Alfredsson, L., Bottai, M., Askling, J. & Wolk, A. Long term alcohol intake and risk of rheumatoid arthritis in women: a population based cohort study. BMJ 345, e4230 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Palmer, R. H. et al. Shared additive genetic influences on DSM-IV criteria for alcohol dependence in subjects of European ancestry. Addiction 110, 1922–1931 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fini, M. A., Elias, A., Johnson, R. J. & Wright, R. M. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin. Transl. Med. 1, 16 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ames, B. N., Cathcart, R., Schwiers, E. & Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl Acad. Sci. USA 78, 6858–6862 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sautin, Y. Y. & Johnson, R. J. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 27, 608–619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levine, W., Dyer, A. R., Shekelle, R. B., Schoenberger, J. A. & Stamler, J. Serum uric acid and 11.5-year mortality of middle-aged women: findings of the Chicago Heart Association Detection Project in Industry. J. Clin. Epidemiol. 42, 257–267 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Takkunen, H., Reunanen, A., Aromaa, A. & Knekt, P. Raised serum urate concentration as risk factor for premature mortality in middle aged men. Br. Med. J. (Clin. Res. Ed.) 288, 1161 (1984).

    Article  CAS  Google Scholar 

  65. Kolonel, L. N., Yoshizawa, C., Nomura, A. M. & Stemmermann, G. N. Relationship of serum uric acid to cancer occurrence in a prospective male cohort. Cancer Epidemiol. Biomarkers Prev. 3, 225–228 (1994).

    CAS  PubMed  Google Scholar 

  66. Hiatt, R. A. & Fireman, B. H. Serum uric acid unrelated to cancer incidence in humans. Cancer Res. 48, 2916–2918 (1988).

    CAS  PubMed  Google Scholar 

  67. Petersson, B. & Trell, E. Raised serum urate concentration as risk factor for premature mortality in middle aged men: relation to death from cancer. Br. Med. J. (Clin. Res. Ed.) 287, 7–9 (1983).

    Article  CAS  Google Scholar 

  68. Ghaemi-Oskouie, F. & Shi, Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr. Rheumatol. Rep. 13, 160–166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Boffetta, P., Nordenvall, C., Nyrén, O. & Ye, W. A prospective study of gout and cancer. Eur. J. Cancer Prev. 18, 127–132 (2009).

    Article  PubMed  Google Scholar 

  71. Doody, M. M. et al. Leukemia, lymphoma, and multiple myeloma following selected medical conditions. Cancer Causes Control 3, 449–456 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Kuo, C. F. et al. Increased risk of cancer among gout patients: a nationwide population study. Joint Bone Spine 79, 375–378 (2012).

    Article  PubMed  Google Scholar 

  73. Burgess, S., Butterworth, A., Malarstig, A. & Thompson, S. G. Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ 345, e7325 (2012).

    Article  PubMed  Google Scholar 

  74. Antonopoulos, A. S., Margaritis, M., Lee, R., Channon, K. & Antoniades, C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des. 18, 1519–1530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Schooling, C. M., Freeman, G. & Cowling, B. J. Mendelian randomization and estimation of treatment efficacy for chronic diseases. Am. J. Epidemiol. 177, 1128–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Sofat, R. et al. Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms. Circulation 121, 52–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Aulchenko, Y. S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Sluijs, I. et al. A Mendelian randomization study of circulating uric acid and type 2 diabetes. Diabetes 64, 3028–3036 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thanassoulis, G. & O'Donnell, C. J. Mendelian randomization: nature's randomized trial in the post-genome era. JAMA 301, 2386–2388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bao, Y. et al. Lack of gene-diuretic interactions on the risk of incident gout: the Nurses' Health Study and Health Professionals Follow-up Study. Ann. Rheum. Dis. 74, 1394–1398 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. McAdams-DeMarco, M. A. et al. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann. Rheum. Dis. 72, 701–706 (2013).

    Article  PubMed  Google Scholar 

  84. Katan, M. B. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 327, 507–508 (1986).

    Article  Google Scholar 

  85. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haase, C. L. et al. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J. Clin. Endocrinol. Metab. 97, E248–E256 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Burgess, S., Freitag, D. F., Khan, H., Gorman, D. N. & Thompson, S. G. Using multivariable Mendelian randomization to disentangle the causal effects of lipid fractions. PLoS ONE 9, e108891 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Cannon, C. P. et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363, 2406–2415 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    CAS  PubMed  Google Scholar 

  92. Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Ford, E. S. et al. Homocyst(e)ine and cardiovascular disease: a systematic review of the evidence with special emphasis on case-control studies and nested case-control studies. Int. J. Epidemiol. 31, 59–70 (2002).

    Article  PubMed  Google Scholar 

  94. Klerk, M. et al. MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 288, 2023–2031 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Frederiksen, J. et al. Methylenetetrahydrofolate reductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: prospective and case-control studies from the Copenhagen City Heart Study. Blood 104, 3046–3051 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B. & Dawber, T. R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med. 62, 707–714 (1977).

    Article  CAS  PubMed  Google Scholar 

  97. Emerging Risk Factors Collaboration et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

  98. C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC) et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ 342, d548 (2011).

  99. O'Leary, C. M. & Bower, C. Guidelines for pregnancy: what's an acceptable risk, and how is the evidence (finally) shaping up? Drug Alcohol Rev. 31, 170–183 (2012).

    Article  PubMed  Google Scholar 

  100. Zuccolo, L. et al. Prenatal alcohol exposure and offspring cognition and school performance. A 'Mendelian randomization' natural experiment. Int. J. Epidemiol. 42, 1358–1370 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Moore, R. D., Levine, D. M., Southard, J., Entwisle, G. & Shapiro, S. Alcohol consumption and blood pressure in the 1982 Maryland Hypertension Survey. Am. J. Hypertens. 3, 1–7 (1990).

    Article  CAS  PubMed  Google Scholar 

  102. Fuchs, F. D., Chambless, L. E., Whelton, P. K., Nieto, F. J. & Heiss, G. Alcohol consumption and the incidence of hypertension: The Atherosclerosis Risk in Communities Study. Hypertension 37, 1242–1250 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Patel, R. et al. The detection, treatment and control of high blood pressure in older British adults: cross-sectional findings from the British Women's Heart and Health Study and the British Regional Heart Study. J. Hum. Hypertens. 20, 733–741 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Marmot, M. G. et al. Alcohol and blood pressure: the INTERSALT study. BMJ 308, 1263–1267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, L., Smith, G. D., Harbord, R. M. & Lewis, S. J. Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS Med. 5, e52 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liel, Y., Ulmer, E., Shary, J., Hollis, B. W. & Bell, N. H. Low circulating vitamin D in obesity. Calcif. Tissue Int. 43, 199–201 (1988).

    Article  CAS  PubMed  Google Scholar 

  107. Sneve, M., Figenschau, Y. & Jorde, R. Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur. J. Endocrinol. 159, 675–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Zittermann, A. et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am. J. Clin. Nutr. 89, 1321–1327 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Salehpour, A. et al. Vitamin D3 and the risk of CVD in overweight and obese women: a randomised controlled trial. Br. J. Nutr. 108, 1866–1873 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Vimaleswaran, K. S. et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 10, e1001383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mora, S. et al. Lipoprotein(a) and risk of type 2 diabetes. Clin. Chem. 56, 1252–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ye, Z. et al. The association between circulating lipoprotein(a) and type 2 diabetes: is it causal? Diabetes 63, 332–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Leong, A. et al. The causal effect of vitamin D binding protein (DBP) levels on calcemic and cardiometabolic diseases: a Mendelian randomization study. PLoS Med. 11, e1001751 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Palmer, T. M., Thompson, J. R. & Tobin, M. D. Meta-analysis of Mendelian randomization studies incorporating all three genotypes. Stat. Med. 27, 6570–6582 (2008).

    Article  PubMed  Google Scholar 

  115. Mann, V. et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Invest. 107, 899–907 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Panoutsopoulou, K. et al. The effect of FTO variation on increased osteoarthritis risk is mediated through body mass index: a mendelian randomisation study. Ann. Rheum. Dis. 73, 2082–2086 (2014).

    Article  PubMed  Google Scholar 

  117. Pfister, R. et al. No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomisation approach. Diabetologia 54, 2561–2569 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.R. and T.R.M. researched data for the article and wrote the manuscript. P.R., H.K.C. and T.R.M. contributed substantially to discussions of the article content. R.D. undertook review and editing of the manuscript before submission.

Corresponding author

Correspondence to Tony R. Merriman.

Ethics declarations

Competing interests

P.R. declares that he has received speaking and consulting fees from Menarini and speaking fees and research funding from AstraZeneca. T.R.M. declares that he has received consulting fees and research funding from Ardea Biosciences and AstraZeneca. H.K.C. declares that he has received consulting fees from AstraZeneca and Takeda. R.D. declares no competing interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Systematic literature review* of Mendelian randomization studies of urate (PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, P., Choi, H., Do, R. et al. Insight into rheumatological cause and effect through the use of Mendelian randomization. Nat Rev Rheumatol 12, 486–496 (2016). https://doi.org/10.1038/nrrheum.2016.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing