Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles

Key Points

  • Dendritic cells (DCs) have critical roles in autoimmune disorders and functional heterogeneity exist within each DC subset

  • Autoimmune diseases are associated with changes in DC distribution and function

  • Some DC functions are similarly altered in different autoimmune diseases, whereas other changes are more disease-specific

  • DCs can be manipulated to restore T-cell tolerance and modulate autoantibody production

Abstract

Dendritic cells (DCs) are central regulators of the balance between immunity and tolerance, and alteration of the specialized DC system is a common feature of both systemic and tissue-specific autoimmune diseases. Increasing evidence indicates that the heterogeneity and the remarkable functional diversity of DC subsets might be differentially affected in autoimmune disorders, which accounts for different pathologies. This Review discusses recent findings that support this concept and provides a new conceptual overview of the altered function and distribution of DCs in autoimmune disorders. The discussion will focus on systemic lupus erythematosus — a prototype of a multi-organ disease — as well as rheumatoid arthritis and idiopathic inflammatory myopathies, pathologies characterized by tissue-specific lesions. Studies on these diseases have revealed common and disease-specific changes in DC distribution and in critical DC functions, such as phagocytosis, cytokine secretion and migration. An improved understanding of the roles of altered DC distribution and/or disturbed key functions in these autoimmune diseases will pave the way for the development of new therapies aiming at reducing immunogenicity and at enhancing the tolerogenic capacity of DCs. Although some tolerogenic DCs have already been introduced in the clinic, the successful translation of other DC-based therapies will require considerable research efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origin, distribution and migration of human dendritic cell subsets.
Figure 2: Involvement of plasmacytoid dendritic cells in the induction and amplification of autoimmunity in systemic lupus erythematosus.
Figure 3: Dendritic cell subsets in the rheumatoid arthritis synovium and inflamed muscle.
Figure 4: Role of chemokines in dendritic cell migration.

Similar content being viewed by others

References

  1. Dalakas, M. C. Inflammatory muscle diseases. N. Engl. J. Med. 372, 1734–1747 (2015).

    Article  PubMed  Google Scholar 

  2. Hahn, B. H. Antibodies to DNA. N. Engl. J. Med. 338, 1359–1368 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koenig, M., Fritzler, M. J., Targoff, I. N., Troyanov, Y. & Senécal, J.-L. Heterogeneity of autoantibodies in 100 patients with autoimmune myositis: insights into clinical features and outcomes. Arthritis Res. Ther. 9, R78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsokos, G. C. Systemic lupus erythematosus in 2015: Cellular and metabolic requirements of effector T cells. Nat. Rev. Rheumatol. 12, 74–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Petrelli, A. & van Wijk, F. CD8+ T cells in human autoimmune arthritis: the unusual suspects. Nat. Rev. Rheumatol. 12, 421–428 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Malmström, V., Venalis, P. & Albrecht, I. T cells in myositis. Arthritis Res. Ther. 14, 230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pascual, V., Farkas, L. & Banchereau, J. Systemic lupus erythematosus: all roads lead to type I interferons. Curr. Opin. Immunol. 18, 676–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11, 763–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Goebels, N. et al. Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J. Clin. Invest. 97, 2905–2910 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zielinski, C. E. Autoimmunity beyond TH17: GM-CSF producing T cells. Cell Cycle 13, 2489–2490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ganguly, D., Haak, S., Sisirak, V. & Reizis, B. The role of dendritic cells in autoimmunity. Nat. Rev. Immunol. 13, 566–577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. León, B., López-Bravo, M. & Ardavín, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hammad, H. et al. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of TH2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Campbell, I. K. et al. Differentiation of inflammatory dendritic cells is mediated by NF-κB1-dependent GM-CSF production in CD4 T cells. J. Immunol. Baltim. Md. 186, 5468–5477 (2011).

    CAS  Google Scholar 

  18. Segura, E. et al. Human inflammatory dendritic cells induce TH17 cell differentiation. Immunity 38, 336–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Steinman, R. M., Inaba, K., Turley, S., Pierre, P. & Mellman, I. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum. Immunol. 60, 562–567 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Somersan, S. & Bhardwaj, N. Tethering and tickling: a new role for the phosphatidylserine receptor. J. Cell Biol. 155, 501–504 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steinman, R. M. et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. NY Acad. Sci. 987, 15–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Gallo, P. M. & Gallucci, S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front. Immunol. 4, 138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walsh, K. P. & Mills, K. H. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 34, 521–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Segura, E. et al. Characterization of resident and migratory dendritic cells in human lymph nodes. J. Exp. Med. 209, 653–660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu, C. I. et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J. Immunol. Baltim. Md. 1950193, 4335–4343 (2014).

    CAS  Google Scholar 

  29. Villadangos, J. A. & Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Reizis, B., Colonna, M., Trinchieri, G., Barrat, F. & Gilliet, M. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nat. Rev. Immunol. 11, 558–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15, 471–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moseman, E. A. et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J. Immunol. Baltim. Md. 1950173, 4433–4442 (2004).

    CAS  Google Scholar 

  33. Hanabuchi, S. et al. Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J. Immunol. Baltim. Md. 1950184, 2999–3007 (2010).

    CAS  Google Scholar 

  34. Martín-Gayo, E., Sierra-Filardi, E., Corbí, A. L. & Toribio, M. L. Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood 115, 5366–5375 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nizzoli, G. et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood 122, 932–942 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Hémont, C., Neel, A., Heslan, M., Braudeau, C. & Josien, R. Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J. Leukoc. Biol. 93, 599–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Ueno, H., Schmitt, N., Palucka, A. K. & Banchereau, J. Dendritic cells and humoral immunity in humans. Immunol. Cell Biol. 88, 376–380 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jego, G., Pascual, V., Palucka, A. K. & Banchereau, J. Dendritic cells control B cell growth and differentiation. Curr. Dir. Autoimmun. 8, 124–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Qi, H., Egen, J. G., Huang, A. Y. C. & Germain, R. N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. MacLennan, I. & Vinuesa, C. Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses. Immunity 17, 235–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Kalled, S. L., Ambrose, C. & Hsu, Y.-M. The biochemistry and biology of BAFF, APRIL and their receptors. Curr. Dir. Autoimmun. 8, 206–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Gill, M. A. et al. Blood dendritic cells and DC-poietins in systemic lupus erythematosus. Hum. Immunol. 63, 1172–1180 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Jin, O. et al. Systemic lupus erythematosus patients have increased number of circulating plasmacytoid dendritic cells, but decreased myeloid dendritic cells with deficient CD83 expression. Lupus 17, 654–662 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Cederblad, B. et al. Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-alpha- producing cells. J. Autoimmun. 11, 465–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F. L. Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Migita, K. et al. Reduced blood BDCA-2+ (lymphoid) and CD11c+ (myeloid) dendritic cells in systemic lupus erythematosus. Clin. Exp. Immunol. 142, 84–91 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jongbloed, S. L. et al. Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res. Ther. 8, R15 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Page, G. & Miossec, P. Paired synovium and lymph nodes from rheumatoid arthritis patients differ in dendritic cell and chemokine expression. J. Pathol. 204, 28–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Reis e Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Sozzani, S., Vermi, W., Del Prete, A. & Facchetti, F. Trafficking properties of plasmacytoid dendritic cells in health and disease. Trends Immunol. 31, 270–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Blomberg, S. et al. Presence of cutaneous interferon-α producing cells in patients with systemic lupus erythematosus. Lupus 10, 484–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Fiore, N. et al. Immature myeloid and plasmacytoid dendritic cells infiltrate renal tubulointerstitium in patients with lupus nephritis. Mol. Immunol. 45, 259–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Tucci, M. et al. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 58, 251–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Lebre, M. C. et al. Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles. Am. J. Pathol. 172, 940–950 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. López de Padilla, C. M. et al. Plasmacytoid dendritic cells in inflamed muscle of patients with juvenile dermatomyositis. Arthritis Rheum. 56, 1658–1668 (2007).

    Article  PubMed  Google Scholar 

  57. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Vermi, W. et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J. Exp. Med. 201, 509–515 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Skrzeczyńska-Moncznik, J. et al. Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem. Biophys. Res. Commun. 380, 323–327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Albanesi, C. et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J. Exp. Med. 206, 249–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaneko, K. et al. Chemerin activates fibroblast-like synoviocytes in patients with rheumatoid arthritis. Arthritis Res. Ther. 13, R158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eisinger, K. et al. Chemerin induces CCL2 and TLR4 in synovial fibroblasts of patients with rheumatoid arthritis and osteoarthritis. Exp. Mol. Pathol. 92, 90–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Bondue, B., Wittamer, V. & Parmentier, M. Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev. 22, 331–338 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Eloranta, M.-L. et al. A possible mechanism for endogenous activation of the type I interferon system in myositis patients with anti-Jo-1 or anti-Ro 52/anti-Ro 60 autoantibodies. Arthritis Rheum. 56, 3112–3124 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Page, G., Chevrel, G. & Miossec, P. Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: Interaction with chemokines and Th1 cytokine-producing cells. Arthritis Rheum. 50, 199–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morelli, A. E. et al. Internalization of circulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production. Blood 101, 611–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 9, 353–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leffler, J., Bengtsson, A. A. & Blom, A. M. The complement system in systemic lupus erythematosus: an update. Ann. Rheum. Dis. 73, 1601–1606 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Hu, C. Y. et al. Genetic polymorphism in milk fat globule-EGF factor 8 (MFG-E8) is associated with systemic lupus erythematosus in human. Lupus 18, 676–681 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramirez-Ortiz, Z. G. et al. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat. Immunol. 14, 917–926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Asano, K. et al. Masking of phosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production in mice. J. Exp. Med. 200, 459–467 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peng, Y. & Elkon, K. B. Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens. J. Clin. Invest. 121, 2221–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. White, S. & Rosen, A. Apoptosis in systemic lupus erythematosus. Curr. Opin. Rheumatol. 15, 557–562 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Baccala, R., Hoebe, K., Kono, D. H., Beutler, B. & Theofilopoulos, A. N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med. 13, 543–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Li, H. et al. Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus. J. Clin. Invest. 125, 2877–2890 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tournadre, A., Lenief, V., Eljaafari, A. & Miossec, P. Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum. 64, 533–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Greter, M. et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36, 1031–1046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reynolds, G. et al. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-206578 (2015).

  82. Benedetti, G. & Miossec, P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur. J. Immunol. 44, 339–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Chevrel, G., Granet, C. & Miossec, P. Contribution of tumour necrosis factor α and interleukin (IL) 1β to IL6 production, NF-κB nuclear translocation, and class I MHC expression in muscle cells: in vitro regulation with specific cytokine inhibitors. Ann. Rheum. Dis. 64, 1257–1262 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chevrel, G. et al. Interleukin-17 increases the effects of IL-1β on muscle cells: arguments for the role of T cells in the pathogenesis of myositis. J. Neuroimmunol. 137, 125–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Benderdour, M. et al. Interleukin 17 (IL-17) induces collagenase-3 production in human osteoarthritic chondrocytes via AP-1 dependent activation: differential activation of AP-1 members by IL-17 and IL-1beta. J. Rheumatol. 29, 1262–1272 (2002).

    CAS  PubMed  Google Scholar 

  86. Pacquelet, S. et al. Interleukin 17, a nitric oxide-producing cytokine with a peroxynitrite-independent inhibitory effect on proteoglycan synthesis. J. Rheumatol. 29, 2602–2610 (2002).

    CAS  PubMed  Google Scholar 

  87. Takayanagi, H. Osteoimmunology and the effects of the immune system on bone. Nat. Rev. Rheumatol. 5, 667–676 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Hot, A. & Miossec, P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann. Rheum. Dis. 70, 727–732 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, S.-Y. et al. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Res. Ther. 15, R31 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Page, G. & Miossec, P. RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum. 52, 2307–2312 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Rivollier, A. et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104, 4029–4037 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Gilliet, M., Cao, W. & Liu, Y.-J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Braun, D., Caramalho, I. & Demengeot, J. IFN-α/β enhances BCR-dependent B cell responses. Int. Immunol. 14, 411–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Le Bon, A. et al. Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Le Bon, A. et al. Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J. Immunol. Baltim. Md. 1950176, 2074–2078 (2006).

    CAS  Google Scholar 

  97. Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lombardi, V., Van Overtvelt, L., Horiot, S. & Moingeon, P. Human dendritic cells stimulated via TLR7 and/or TLR8 induce the sequential production of Il-10, IFN-γ, and IL-17A by naive CD4+ T cells. J. Immunol. Baltim. Md. 182, 3372–3379 (2009).

    CAS  Google Scholar 

  102. Blanco, P., Palucka, A. K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science 294, 1540–1543 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, R. et al. Interferon-alpha and interleukin-6 in SLE serum induce the differentiation and maturation of dendritic cells derived from CD34+ hematopoietic precursor cells. Cytokine 50, 195–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. MartIn-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Tucci, M., Ciavarella, S., Strippoli, S., Dammacco, F. & Silvestris, F. Oversecretion of cytokines and chemokines in lupus nephritis is regulated by intraparenchymal dendritic cells: a review. Ann. NY Acad. Sci. 1173, 449–457 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Page, G., Lebecque, S. & Miossec, P. Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium. J. Immunol. Baltim. Md. 168, 5333–5341 (2002).

    CAS  Google Scholar 

  110. Noort, A. R. et al. Tertiary lymphoid structures in rheumatoid arthritis: NF-κB-inducing kinase-positive endothelial cells as central players. Am. J. Pathol. 185, 1935–1943 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Aziz, K. E., McCluskey, P. J. & Wakefield, D. Characterisation of follicular dendritic cells in labial salivary glands of patients with primary Sjögren syndrome: comparison with tonsillar lymphoid follicles. Ann. Rheum. Dis. 56, 140–143 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Manzo, A., Bombardieri, M., Humby, F. & Pitzalis, C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol. Rev. 233, 267–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).

    Article  PubMed  Google Scholar 

  114. Corsiero, E. et al. Role of lymphoid chemokines in the development of functional ectopic lymphoid structures in rheumatic autoimmune diseases. Immunol. Lett. 145, 62–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kroot, E. J. et al. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 43, 1831–1835 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Thomas, R. Dendritic cells and the promise of antigen-specific therapy in rheumatoid arthritis. Arthritis Res. Ther. 15, 204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Daniel, C., Ploegh, H. & von Boehmer, H. Antigen-specific induction of regulatory T cells in vivo and in vitro. Methods Mol. Biol. 707, 173–185 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Idoyaga, J. et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Invest. 123, 844–854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Benham, H. et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci. Transl. Med. 7, 290ra87 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Hilkens, C. M. U. & Isaacs, J. D. Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now? Clin. Exp. Immunol. 172, 148–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. US National Library of Medicine. Autologous Tolerogenic Dendritic Cells for Rheumatoid Arthritis (AutoDECRA) ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT01352858 (2013).

  124. Rowland, S. L. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J. Exp. Med. 211, 1977–1991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sisirak, V. et al. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J. Exp. Med. 211, 1969–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Merrill, J. T. et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon α monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann. Rheum. Dis. 70, 1905–1913 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Petri, M. et al. Sifalimumab, a human anti-interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 65, 1011–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McBride, J. M. et al. Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum. 64, 3666–3676 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Lauwerys, B. R. et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid. Arthritis Rheum. 65, 447–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Haniffa, M., Collin, M. & Ginhoux, F. Ontogeny and functional specialization of dendritic cells in human and mouse. Adv. Immunol. 120, 1–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Segura, E. & Amigorena, S. Inflammatory dendritic cells in mice and humans. Trends Immunol. 34, 440–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Lee, J. et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J. Exp. Med. 212, 385–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Breton, G. et al. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J. Exp. Med. 212, 401–413 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of content and wrote the manuscript. P.M. reviewed and edited the article before submission.

Corresponding author

Correspondence to Pierre Miossec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutant, F., Miossec, P. Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles. Nat Rev Rheumatol 12, 703–715 (2016). https://doi.org/10.1038/nrrheum.2016.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing