Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond pan-B-cell-directed therapy — new avenues and insights into the pathogenesis of SLE

Key Points

  • Pan-B-cell-directed agents show only modest evidence of clinical benefit in systemic lupus erythematosus (SLE), despite the crucial role of B-lineage cells in its pathogenesis

  • Trials of pan-B-cell-directed agents have provided evidence of antibody-independent contributions of CD20+ B cells as well as antibody–dependent contributions of CD20 plasma cells to rheumatic disease

  • The contributions of antibody-independent B-cell functions (antigen presentation, cytokine production and co-stimulation) to the pathogenesis of SLE suggest a role for B-cell-targeted approaches beyond pan-B-cell depletion

  • In SLE, diminished B-cell receptor signalling and reduced cytokine production indicate impaired function of B regulatory cells, which implies that the regulatory capacity of these cells could be a therapeutic target

  • Strategies specifically targeting B cells, plasma cells or pathogenic B-lineage cells could influence key interactions of innate and adaptive immunity in SLE and hold promise to improve patients' outcomes

  • A current challenge is to determine whether inhibition of specific B-cell pathways or improving the regulatory functions of B cells will also improve the clinical efficacy and safety of B-cell-directed therapies

Abstract

New insights into the mechanisms of autoimmune diseases have been obtained not only from preclinical studies, but also from clinical trials of pan-B-cell-directed therapy. Overall, the results of these clinical trials suggest that more-specific approaches focusing on pathogenic B-cell functions, and perhaps sparing or even enhancing regulatory B-cell activity, might be attractive alternatives. Importantly, pathogenic B-cell subpopulations function within a network of cellular interactions, many of which might require additional interventions to restore immunologic balance and suppress autoimmune disease. Thus, approaches that simultaneously target innate immune cells as well as multiple nodes of T-cell and B-cell interactions might hold the promise of improved therapeutic efficacy. Interfering with B-cell intracellular signalling pathways, altering their intracellular metabolic pathways and perturbing transcription factors are additional options. This Review critically analyses these approaches, examines the role of cytokines and other functions of B-lineage cells separate from antibody secretion, and provides insights into the potential next generation of therapies targeting B-lineage cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction, maintenance and resolution of chronic autoimmunity in SLE.
Figure 2: Heat map of targeted therapies in autoimmune diseases.
Figure 3: B-cell involvement in the immunopathogenesis of SLE and relevant therapeutic targets.

Similar content being viewed by others

References

  1. Wahren-Herlenius, M. & Dörner, T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet 382, 819–831 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Lino, A. C., Dörner, T., Bar-Or, A. & Fillatreau, S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol. Rev. 269, 130–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Kamal, A. & Khamashta, M. The efficacy of novel B cell biologics as the future of SLE treatment: a review. Autoimmun. Rev. 13, 1094–1101 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Morris, D. L. et al. MHC associations with clinical and autoantibody manifestations in European SLE. Genes Immun. 15, 210–217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13–BLK and ITGAMITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Shlomchik, M. J., Craft, J. E. & Mamula, M. J. From T to B and back again: positive feedback in systemic autoimmune disease. Nat. Rev. Immunol. 1, 147–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Getahun, A., Beavers, N. A., Larson, S. R., Shlomchik, M. J. & Cambier, J. C. Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. J. Exp. Med. 213, 751–769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nickerson, K. M., Cullen, J. L., Kashgarian, M. & Shlomchik, M. J. Exacerbated autoimmunity in the absence of TLR9 in MRL.Faslpr mice depends on Ifnar1. J. Immunol. 190, 3889–3894 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Ahuja, A. et al. Depletion of B cells in murine lupus: efficacy and resistance. J. Immunol. 179, 3351–3361 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Anderson, S. M., Tomayko, M. M. & Shlomchik, M. J. Intrinsic properties of human and murine memory B cells. Immunol. Rev. 211, 280–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Dörner, T. & Lipsky, P. E. B cells: depletion or functional modulation in rheumatic diseases. Curr. Opin. Rheumatol. 26, 228–236 (2014).

    Article  PubMed  Google Scholar 

  13. Stohl, W. Therapeutic targeting of the BAFF/APRIL axis in systemic lupus erythematosus. Expert Opin. Ther. Targets 18, 473–489 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Isenberg, D. A. et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 323–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Merrill, J. T. et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 332–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Furie, R. A. et al. A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann. Rheum. Dis. 74, 1667–1675 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Schiff, M. et al. Efficacy and safety of tabalumab, an anti-BAFF monoclonal antibody, in patients with moderate-to-severe rheumatoid arthritis and inadequate response to TNF inhibitors: results of a randomised, double-blind, placebo-controlled, phase 3 study. RMD Open 1, e000037 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stohl, W., Scholz, J. L. & Cancro, M. P. Targeting BLyS in rheumatic disease: the sometimes-bumpy road from bench to bedside. Curr. Opin. Rheumatol. 23, 305–310 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Genovese, M. C., Kinnman, N., de La Bourdonnaye, G., Pena Rossi, C. & Tak, P. P. Atacicept in patients with rheumatoid arthritis and an inadequate response to tumor necrosis factor antagonist therapy: results of a phase II, randomized, placebo-controlled, dose-finding trial. Arthritis Rheum. 63, 1793–1803 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. van Vollenhoven, R. F., Kinnman, N., Vincent, E., Wax, S. & Bathon, J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum. 63, 1782–1792 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Isenberg, D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74, 2006–2015 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01972568 (2016).

  25. Kappos, L. et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 13, 353–363 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tony, H. P. et al. Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID). Arthritis Res. Ther. 13, R75 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duxbury, B., Combescure, C. & Chizzolini, C. Rituximab in systemic lupus erythematosus: an updated systematic review and meta-analysis. Lupus 22, 1489–1503 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Bertsias, G. K. et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann. Rheum. Dis. 71, 1771–1782 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Hahn, B. H. et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. (Hoboken) 64, 797–808 (2012).

    Article  Google Scholar 

  33. Ahuja, A. et al. An acquired defect in IgG-dependent phagocytosis explains the impairment in antibody-mediated cellular depletion in lupus. J. Immunol. 187, 3888–3894 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Reddy, V. et al. Internalization of rituximab and the efficiency of B cell depletion in rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheumatol. 67, 2046–2055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dörner, T. Crossroads of B cell activation in autoimmunity: rationale of targeting B cells. J. Rheumatol. Suppl. 77, 3–11 (2006).

    PubMed  Google Scholar 

  36. Silverman, G. J. & Boyle, D. L. Understanding the mechanistic basis in rheumatoid arthritis for clinical response to anti-CD20 therapy: the B-cell roadblock hypothesis. Immunol. Rev. 223, 175–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Dörner, T., Jacobi, A. M. & Lipsky, P. E. B cells in autoimmunity. Arthritis Res. Ther. 11, 247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen, P. & Fillatreau, S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15, 441–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Dörner, T. et al. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res. Ther. 8, R74 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wallace, D. J. et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann. Rheum. Dis. 73, 183–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Wallace, D. J. et al. Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology (Oxford) 52, 1313–1322 (2013).

    Article  CAS  Google Scholar 

  42. Steinfeld, S. D. & Youinou, P. Epratuzumab (humanised anti-CD22 antibody) in autoimmune diseases. Expert Opin. Biol. Ther. 6, 943–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Dörner, T., Shock, A., Goldenberg, D. M. & Lipsky, P. E. The mechanistic impact of CD22 engagement with epratuzumab on B cell function: implications for the treatment of systemic lupus erythematosus. Autoimmun. Rev. 14, 1079–1086 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Sieger, N. et al. CD22 ligation inhibits downstream B cell receptor signaling and Ca2+ flux upon activation. Arthritis Rheum. 65, 770–779 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Jacobi, A. M. et al. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann. Rheum. Dis. 67, 450–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Fleischer, S. J., Daridon, C., Fleischer, V., Lipsky, P. E. & Dörner, T. Enhanced tyrosine phosphatase activity underlies dysregulated B-cell receptor signaling and promotes survival of human lupus B cells. Arthritis Rheumatol. 68, 1210–1221 (2016).

    CAS  PubMed  Google Scholar 

  47. Daridon, C. et al. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res. Ther. 12, R204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chan, O. T., Hannum, L. G., Haberman, A. M., Madaio, M. P. & Shlomchik, M. J. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J. Exp. Med. 189, 1639–1648 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leandro, M. J., Edwards, J. C., Cambridge, G., Ehrenstein, M. R. & Isenberg, D. A. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum. 46, 2673–2677 (2002).

    Article  PubMed  Google Scholar 

  50. Lazarus, M. N., Turner-Stokes, T., Chavele, K. M., Isenberg, D. A. & Ehrenstein, M. R. B-Cell numbers and phenotype at clinical relapse following rituximab therapy differ in SLE patients according to anti-dsDNA antibody levels. Rheumatology (Oxford) 51, 1208–1215 (2012).

    Article  CAS  Google Scholar 

  51. Cambridge, G. et al. B cell depletion therapy in systemic lupus erythematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann. Rheum. Dis. 67, 1011–1016 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Burmester, G. R., Feist, E. & Dörner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 77–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Lampropoulou, V. et al. Suppressive functions of activated B cells in autoimmune diseases reveal the dual roles of Toll-like receptors in immunity. Immunol. Rev. 233, 146–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Scapini, P. et al. B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proc. Natl Acad. Sci. USA 108, E823–E832 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xu, Y., Harder, K. W., Huntington, N. D., Hibbs, M. L. & Tarlinton, D. M. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 22, 9–18 (2005).

    PubMed  Google Scholar 

  56. Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Sim, J. H. et al. Autoregulatory function of interleukin-10-producing pre-naive B cells is defective in systemic lupus erythematosus. Arthritis Res. Ther. 17, 190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Llorente, L. et al. Spontaneous production of interleukin-10 by B lymphocytes and monocytes in systemic lupus erythematosus. Eur. Cytokine Netw. 4, 421–427 (1993).

    CAS  PubMed  Google Scholar 

  59. Llorente, L. et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum. 43, 1790–1800 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Banchereau, J., Pascual, V. & O'Garra, A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat. Immunol. 13, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Menon, M., Blair, P. A., Isenberg, D. A. & Mauri, C. A. Regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 44, 683–697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sieber, J. et al. Active systemic lupus erythematosus is associated with a reduced cytokine production by B cells in response to TLR9 stimulation. Arthritis Res. Ther. 16, 477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl Acad. Sci. USA 104, 6758–6763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shirota, Y. et al. Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 72, 118–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Fleischer, V. et al. Epratuzumab inhibits the production of the proinflammatory cytokines IL-6 and TNF-α, but not the regulatory cytokine IL-10, by B cells from healthy donors and SLE patients. Arthritis Res. Ther. 17, 185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schett, G., Elewaut, D., McInnes, I. B., Dayer, J. M. & Neurath, M. F. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Reddy, V., Jayne, D., Close, D. & Isenberg, D. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res. Ther. 15, S2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chan, O. T., Madaio, M. P. & Shlomchik, M. J. The central and multiple roles of B cells in lupus pathogenesis. Immunol. Rev. 169, 107–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Hiepe, F. & Radbruch, A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat. Rev. Nephrol. 12, 232–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Dörner, T., Radbruch, A. & Burmester, G. R. B-cell-directed therapies for autoimmune disease. Nat. Rev. Rheumatol. 5, 433–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Hiepe, F. et al. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 7, 170–178 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Aringer, M. & Smolen, J. S. Safety of off-label biologicals in systemic lupus erythematosus. Expert Opin. Drug Saf. 14, 243–251 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Emery, P. et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 54, 1390–1400 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Tsuiji, M. et al. A checkpoint for autoreactivity in human IgM+ memory B cell development. J. Exp. Med. 203, 393–400 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Anolik, J. H. et al. B cell reconstitution after rituximab treatment of lymphoma recapitulates B cell ontogeny. Clin. Immunol. 122, 139–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Vital, E. M. et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 63, 3038–3047 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Iwata, S. et al. Phenotypic changes of lymphocytes in patients with systemic lupus erythematosus who are in longterm remission after B cell depletion therapy with rituximab. J. Rheumatol. 38, 633–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Leandro, M. J., Cambridge, G., Ehrenstein, M. R. & Edwards, J. C. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 54, 613–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Roll, P., Dörner, T. & Tony, H. P. Anti-CD20 therapy in patients with rheumatoid arthritis: predictors of response and B cell subset regeneration after repeated treatment. Arthritis Rheum. 58, 1566–1575 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Rehnberg, M., Amu, S., Tarkowski, A., Bokarewa, M. I. & Brisslert, M. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res. Ther. 11, R123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakou, M. et al. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res. Ther. 11, R131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moller, B. et al. Class-switched B cells display response to therapeutic B-cell depletion in rheumatoid arthritis. Arthritis Res. Ther. 11, R62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cambridge, G. et al. Circulating levels of B lymphocyte stimulator in patients with rheumatoid arthritis following rituximab treatment: relationships with B cell depletion, circulating antibodies, and clinical relapse. Arthritis Rheum. 54, 723–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. St Clair, E. W. et al. Rituximab therapy for primary Sjögren's syndrome: an open-label clinical trial and mechanistic analysis. Arthritis Rheum. 65, 1097–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oddis, C. V. et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 65, 314–324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mahevas, M. et al. B cell depletion in immune thrombocytopenia reveals splenic long-lived plasma cells. J. Clin. Invest. 123, 432–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Isenberg, D. A. & Rahman, A. Systemic lupus erythematosus in 2013. Taking a closer look at biologic therapy for SLE. Nat. Rev. Rheumatol. 10, 71–72 (2014).

    Article  PubMed  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02260934 (2016).

  94. Condon, M. B. et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann. Rheum. Dis. 72, 1280–1286 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Kalunian, K. C. et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 75, 196–202 (2016).

    PubMed  Google Scholar 

  96. Khamashta, M. et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2015-208562 (2016).

  97. Mathian, A., Hie, M., Cohen-Aubart, F. & Amoura, Z. Targeting interferons in systemic lupus erythematosus: current and future prospects. Drugs 75, 835–846 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02349061 (2016).

  99. Dahl, C., Johansen, C., Kragballe, K. & Olesen, A. B. Ustekinumab in the treatment of refractory chronic cutaneous lupus erythematosus: a case report. Acta Derm. Venereol. 93, 368–369 (2013).

    Article  PubMed  Google Scholar 

  100. Varada, S., Gottlieb, A. B., Merola, J. F., Saraiya, A. R. & Tintle, S. J. Treatment of coexistent psoriasis and lupus erythematosus. J. Am. Acad. Dermatol. 72, 253–260 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Winchester, D., Duffin, K. C. & Hansen, C. Response to ustekinumab in a patient with both severe psoriasis and hypertrophic cutaneous lupus. Lupus 21, 1007–1010 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. De Souza, A., Ali-Shaw, T., Strober, B. E. & Franks, A. G. Jr. Successful treatment of subacute lupus erythematosus with ustekinumab. Arch. Dermatol. 147, 896–898 (2011).

    Article  PubMed  Google Scholar 

  103. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Szepietowski, J. C. et al. Phase I, randomized, double-blind, placebo-controlled, multiple intravenous, dose-ascending study of sirukumab in cutaneous or systemic lupus erythematosus. Arthritis Rheum. 65, 2661–2671 (2013).

    CAS  PubMed  Google Scholar 

  105. Rhee, I. & Veillette, A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat. Immunol. 13, 439–447 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Holmes, D. A. et al. Autoimmunity-associated protein tyrosine phosphatase PEP negatively regulates IFN-α receptor signaling. J. Exp. Med. 212, 1081–1093 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Doody, K. M. et al. Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy. Sci. Transl. Med. 7, 288ra276 (2015).

    Article  CAS  Google Scholar 

  108. Goropevsek, A., Holcar, M. & Avcin, T. The role of STAT signaling pathways in the pathogenesis of systemic lupus erythematosus. Clin. Rev. Allergy Immunol. http://dx.doi.org/10.1007/s12016-016-8550-y (2016).

  109. Klein, L. & Jovanovic, K. Regulatory T cell lineage commitment in the thymus. Semin. Immunol. 23, 401–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl. Med 7, 274ra218 (2015).

    Article  CAS  Google Scholar 

  111. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 14, 748–755 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Taddeo, A. et al. Long-lived plasma cells are early and constantly generated in New Zealand Black/New Zealand White F1 mice and their therapeutic depletion requires a combined targeting of autoreactive plasma cells and their precursors. Arthritis Res. Ther. 17, 39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Alexander, T. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. 74, 1474–1478 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Waibel, M. et al. Manipulation of B-cell responses with histone deacetylase inhibitors. Nat. Commun. 6, 6838 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Schotterl, S., Brennenstuhl, H. & Naumann, U. Modulation of immune responses by histone deacetylase inhibitors. Crit. Rev. Oncog. 20, 139–154 (2015).

    Article  PubMed  Google Scholar 

  116. Guha, M. HDAC inhibitors still need a home run, despite recent approval. Nat. Rev. Drug Discov. 14, 225–226 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Fleischer, S. J. et al. Increased frequency of a unique spleen tyrosine kinase bright memory B cell population in systemic lupus erythematosus. Arthritis Rheumatol. 66, 3424–3435 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T-Cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lokhorst, H. M. et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N. Engl. J. Med. 373, 1207–1219 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Reichert, J. M. Antibodies to watch in 2015. MAbs 7, 1–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Jordan, N., Lutalo, P. M. & D'Cruz, D. P. Progress with the use of monoclonal antibodies for the treatment of systemic lupus erythematosus. Immunotherapy 7, 255–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. van Vollenhoven, R. F., Parodis, I. & Levitsky, A. Biologics in SLE: towards new approaches. Best Pract. Res. Clin. Rheumatol. 27, 341–349 (2013).

    Article  PubMed  Google Scholar 

  124. Boumpas, D. T., Sidiropoulos, P. & Bertsias, G. Optimum therapeutic approaches for lupus nephritis: what therapy and for whom? Nat. Clin. Pract. Rheumatol. 1, 22–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Grammer, A. C. et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154–CD40 interactions. J. Clin. Invest. 112, 1506–1520 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nomura, S., Kuwana, M. & Ikeda, Y. Induction of T-cell tolerance in a patient with idiopathic thrombocytopenic purpura by single injection of humanized monoclonal antibody to CD40 ligand. Autoimmunity 36, 317–319 (2003).

    Article  PubMed  Google Scholar 

  127. Buchner, K. et al. CD40 ligand is selectively expressed on CD4+ T cells and platelets: implications for CD40–CD40L signalling in atherosclerosis. J. Pathol. 201, 288–295 (2003).

    Article  PubMed  Google Scholar 

  128. Henn, V., Steinbach, S., Buchner, K., Presek, P. & Kroczek, R. A. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98, 1047–1054 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Slupsky, J. R. et al. Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb. Haemost. 80, 1008–1014 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Shock, A. et al. CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: an in vivo study. Arthritis Res. Ther. 17, 234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01764594 (2016).

  133. Hutloff, A. et al. Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum. 50, 3211–3220 (2004).

    Article  PubMed  Google Scholar 

  134. Fullerton, J. N. & Gilroy, D. W. Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Huang, C., Hatzi, K. & Melnick, A. Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated by distinct biochemical mechanisms. Nat. Immunol. 14, 380–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Humrich, J. Y. et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann. Rheum. Dis. 74, 791–792 (2015).

    Article  PubMed  Google Scholar 

  138. Arachchillage, D. R. et al. Rivaroxaban limits complement activation compared to warfarin in antiphospholipid syndrome patients with venous thromboembolism. J. Thromb. Haemost. http://dx.doi.org/10.1111/jth.13475 (2016).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, discussions of its content, writing the manuscript and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Thomas Dörner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörner, T., Lipsky, P. Beyond pan-B-cell-directed therapy — new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol 12, 645–657 (2016). https://doi.org/10.1038/nrrheum.2016.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing