Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Toll-like receptors and chronic inflammation in rheumatic diseases: new developments

Key Points

  • Toll-like receptors (TLRs) have an important role in chronic inflammation in rheumatic diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme disease

  • The Toll–IL-1 receptor (TIR) domain triggers biological responses to IL-1 molecules and to TLR ligands

  • Both microbial (such as lipopolysaccharide and DNA) and endogenous ligands have a role in chronic inflammation in rheumatic diseases

  • Novel strategies to inhibit TLR signalling to treat chronic inflammation in rheumatic diseases include antibodies and small molecules that target TLR receptors and TLR signalling

Abstract

In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll–IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization, signalling pathways and regulation of human Toll-like receptors (TLRs).
Figure 2: Toll–IL-1-receptor (TIR) domains.
Figure 3: Self-sustaining chronic inflammatory loop maintained through Toll-like receptor (TLR) activation.
Figure 4: Therapeutic targeting of Toll-like receptors (TLRs) or TLR signalling pathways.

Similar content being viewed by others

References

  1. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    CAS  PubMed  Google Scholar 

  4. Medzhitov, R. & Janeway, C. A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Kimbrell, D. A. & Beutler, B. The evolution and genetics of innate immunity. Nat. Rev. Genet. 2, 256–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Gao, D. et al. Cyclic GMP–AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anderson, K. V., Bokla, L. & Nusslein-Volhard, C. Establishment of dorsal–ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42, 791–798 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Nomura, N. et al. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001–KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res. 1, 27–35 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Taguchi, T., Mitcham, J. L., Dower, S. K., Sims, J. E. & Testa, J. R. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics 32, 486–488 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Oosting, M. et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc. Natl Acad. Sci. USA 111, E4478–E4484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roach, J. C. et al. The evolution of vertebrate Toll-like receptors. Proc. Natl Acad. Sci. USA 102, 9577–9582 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, B. L. et al. UNC93B1 mediates differential trafficking of endosomal TLRs. eLife 2, e00291 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. He, X., Jing, Z. & Cheng, G. MicroRNAs: new regulators of Toll-like receptor signaling pathways. Biomed. Res. Int. 2014, 945169 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Aksoy, E. et al. The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat. Immunol. 13, 1045–1054 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hornef, M. W., Normark, B. H., Vandewalle, A. & Normark, S. Intracellular recognition of lipopolysaccharide by Toll-like receptor 4 in intestinal epithelial cells. J. Exp. Med. 198, 1225–1235 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Radstake, T. R. et al. Expression of Toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-γ. Arthritis Rheum. 50, 3856–3865 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kondo, T., Kawai, T. & Akira, S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 33, 449–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Miggin, S. M. & O'Neill, L. A. New insights into the regulation of TLR signaling. J. Leukoc. Biol. 80, 220–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Horai, R. et al. TNF-α is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice. J. Clin. Invest. 114, 1603–1611 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O'Neill, L. A. & Fitzgerald, K. A. & Bowie, A. G. The Toll–IL-1 receptor adaptor family grows to five members. Trends Immunol. 24, 286–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, S. C., Lo, Y. C. & Wu, H. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drexler, S. K. et al. SIGIRR/TIR-8 is an inhibitor of Toll-like receptor signaling in primary human cells and regulates inflammation in models of rheumatoid arthritis. Arthritis Rheum. 62, 2249–2261 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. O'Neill, L. A. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol. Rev. 226, 10–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Sims, J. E. et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241, 585–589 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Gay, N. J. & Keith, F. J. Drosophila Toll and IL-1 receptor. Nature 351, 355–356 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Heguy, A. et al. Internalization and nuclear localization of interleukin 1 are not sufficient for function. Cell Growth Differ. 2, 311–315 (1991).

    CAS  PubMed  Google Scholar 

  34. Heguy, A., Baldari, C. T., Macchia, G., Telford, J. L. & Melli, M. Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila toll protein are essential for IL-1R signal transduction. J. Biol. Chem. 267, 2605–2609 (1992).

    CAS  PubMed  Google Scholar 

  35. Kirschning, C. J., Wesche, H., Merrill Ayres, T. & Rothe, M. Human Toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188, 2091–2097 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, R. B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Movat, H. Z., Burrowes, C. E., Cybulsky, M. I. & Dinarello, C. A. Acute inflammation and a Shwartzman-like reaction induced by interleukin-1 and tumor necrosis factor. Synergistic action of the cytokines in the induction of inflammation and microvascular injury. Am. J. Pathol. 129, 463–476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Conti, P. et al. Recombinant interleukin 1 and tumor necrosis factor acting in synergy to release thromboxane, 6-KETO-PGF1 alpha and PGE2 by human neutrophils. Scand. J. Rheumatol. Suppl. 75, 318–324 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Dinarello, C. A. The biology of interleukin 1 and comparison to tumor necrosis factor. Immunol. Lett. 16, 227–231 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Okusawa, S., Gelfand, J. A., Ikejima, T., Connolly, R. J. & Dinarello, C. A. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J. Clin. Invest. 81, 1162–1172 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mandrup-Poulsen, T., Bendtzen, K., Dinarello, C. A. & Nerup, J. Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic beta-cell cytotoxicity. J. Immunol. 139, 4077–4082 (1987).

    CAS  PubMed  Google Scholar 

  42. Joosten, L. A., Helsen, M. M., van de Loo, F. A. & van den Berg, W. B. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice: a comparativestudy using anti-TNFα, anti-IL-1α/β, and IL-1Ra. Arthritis Rheum. 39, 797–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Zwerina, J. et al. TNF-induced structural joint damage is mediated by IL-1. Proc. Natl Acad. Sci. USA 104, 11742–11747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. So, A. et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 62, 3064–3076 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Joosten, L. A. et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 62, 3237–3248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu-Bryan, R., Scott, P., Sydlaske, A., Rose, D. M. & Terkeltaub, R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 52, 2936–2946 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Jin, M. S. et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Garlanda, C., Anders, H. J. & Mantovani, A. TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization. Trends Immunol. 30, 439–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Gu, Y. F. et al. Discovery of the DIGIRR gene from teleost fish: a novel Toll-IL-1 receptor family member serving as a negative regulator of IL-1 signaling. J. Immunol. 187, 2514–2530 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Smith, D. E. et al. A central nervous system-restricted isoform of the interleukin-1 receptor accessory protein modulates neuronal responses to interleukin-1. Immunity 30, 817–831 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Termeer, C. et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hiratsuka, S. et al. The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 10, 1349–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Brentano, F., Schorr, O., Gay, R. E., Gay, S. & Kyburz, D. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum. 52, 2656–2665 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Yu, M. et al. HMGB1 signals through Toll-like receptor (TLR) 4 and TLR2. Shock 26, 174–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Foell, D., Wittkowski, H. & Roth, J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 3, 382–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Sokolove, J., Zhao, X., Chandra, P. E. & Robinson, W. H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum. 63, 53–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Roelofs, M. F. et al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of Toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 52, 2313–2322 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Ospelt, C. et al. Overexpression of Toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 58, 3684–3692 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Iwahashi, M. et al. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum. 50, 1457–1467 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Huang, Q., Ma, Y., Adebayo, A. & Pope, R. M. Increased macrophage activation mediated through Toll-like receptors in rheumatoid arthritis. Arthritis Rheum. 56, 2192–2201 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Kowalski, M. L. et al. Increased responsiveness to Toll-like receptor 4 stimulation in peripheral blood mononuclear cells from patients with recent onset rheumatoid arthritis. Mediators Inflamm. 2008, 132732 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Davis, M. L. et al. Associations of Toll-like receptor (TLR)-4 single nucleotide polymorphisms and rheumatoid arthritis disease progression: an observational cohort study. Int. Immunopharmacol. 24, 346–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Scher, J. U. & Abramson, S. B. The microbiome and rheumatoid arthritis. Nat. Rev. Rheumatol. 7, 569–578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rogier, R., Koenders, M. I. & Abdollahi-Roodsaz, S. Toll-like receptor mediated modulation of T cell response by commensal intestinal microbiota as a trigger for autoimmune arthritis. J. Immunol. Res. 2015, 527696 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Saal, J. G. et al. Synovial Epstein–Barr virus infection increases the risk of rheumatoid arthritis in individuals with the shared HLA-DR4 epitope. Arthritis Rheum. 42, 1485–1496 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Saal, J. G. et al. Persistence of B19 parvovirus in synovial membranes of patients with rheumatoid arthritis. Rheumatol. Int. 12, 147–151 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Schrijver, I. A., Melief, M. J., Tak, P. P., Hazenberg, M. P. & Laman, J. D. Antigen-presenting cells containing bacterial peptidoglycan in synovial tissues of rheumatoid arthritis patients coexpress costimulatory molecules and cytokines. Arthritis Rheum. 43, 2160–2168 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. van der Heijden, I. M. et al. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. Arthritis Rheum. 43, 593–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Joosten, L. A. et al. Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J. Immunol. 171, 6145–6153 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Abdollahi-Roodsaz, S. et al. Shift from Toll-like receptor 2 (TLR-2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLR-4-mediated interleukin-17 production. Arthritis Rheum. 58, 3753–3764 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Joosten, L. A. et al. T cell dependence of chronic destructive murine arthritis induced by repeated local activation of Toll-like receptor-driven pathways: crucial role of both interleukin-1β and interleukin-17. Arthritis Rheum. 58, 98–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Abdollahi-Roodsaz, S. et al. Destructive role of myeloid differentiation factor 88 and protective role of TRIF in interleukin-17-dependent arthritis in mice. Arthritis Rheum. 64, 1838–1847 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V. & Tarkowski, A. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Zare, F. et al. Arthritogenic properties of double-stranded (viral) RNA. J. Immunol. 172, 5656–5663 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Choe, J. Y., Crain, B., Wu, S. R. & Corr, M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by Toll-like receptor 4 signaling. J. Exp. Med. 197, 537–542 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hayashi, T. et al. Prevention of autoimmune disease by induction of tolerance to Toll-like receptor 7. Proc. Natl Acad. Sci. USA 106, 2764–2769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alzabin, S. et al. Investigation of the role of endosomal Toll-like receptors in murine collagen-induced arthritis reveals a potential role for TLR7 in disease maintenance. Arthritis Res. Ther. 14, R142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stone, M., Fortin, P. R., Pacheco-Tena, C. & Inman, R. D. Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity. J. Rheumatol. 30, 2112–2122 (2003).

    CAS  PubMed  Google Scholar 

  86. Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008).

    CAS  PubMed  Google Scholar 

  87. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal TH17 cell differentiation. Immunity 40, 594–607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Pablo, P., Chapple, I. L., Buckley, C. D. & Dietrich, T. Periodontitis in systemic rheumatic diseases. Nat. Rev. Rheumatol. 5, 218–224 (2009).

    Article  PubMed  Google Scholar 

  91. Mercado, F. B., Marshall, R. I., Klestov, A. C. & Bartold, P. M. Relationship between rheumatoid arthritis and periodontitis. J. Periodontol. 72, 779–787 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Mikuls, T. R. et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol. 66, 1090–1100 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. de Aquino, S. G. et al. Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven TH17 response. J. Immunol. 192, 4103–4111 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Quirke, A. M. et al. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann. Rheum. Dis. 73, 263–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Mikuls, T. R. et al. Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int. Immunopharmacol. 9, 38–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Lu, M. C. et al. Anti-citrullinated protein antibodies bind surface-expressed citrullinated Grp78 on monocyte/macrophages and stimulate tumor necrosis factor α production. Arthritis Rheum. 62, 1213–1223 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Sacre, S. M. et al. The Toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. Am. J. Pathol. 170, 518–525 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sacre, S. M. et al. Inhibitors of TLR8 reduce TNF production from human rheumatoid synovial membrane cultures. J. Immunol. 181, 8002–8009 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Ultaigh, S. N. et al. Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures. Arthritis Res. Ther. 13, R33 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Abdollahi-Roodsaz, S. et al. Local interleukin-1-driven joint pathology is dependent on Toll-like receptor 4 activation. Am. J. Pathol. 175, 2004–2013 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Youssef, P. et al. Expression of myeloid related proteins (MRP) 8 and 14 and the MRP8/14 heterodimer in rheumatoid arthritis synovial membrane. J. Rheumatol. 26, 2523–2528 (1999).

    CAS  PubMed  Google Scholar 

  103. Shiozawa, K., Hino, K. & Shiozawa, S. Alternatively spliced EDA-containing fibronectin in synovial fluid as a predictor of rheumatoid joint destruction. Rheumatology (Oxford) 40, 739–742 (2001).

    Article  CAS  Google Scholar 

  104. Huang, Q. Q. et al. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J. Immunol. 182, 4965–4973 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Huang, Q. Q. et al. Glycoprotein 96 perpetuates the persistent inflammation of rheumatoid arthritis. Arthritis Rheum. 64, 3638–3648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chamberlain, N. D. et al. Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNFα in monocytes. Ann. Rheum. Dis. 72, 418–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Abdollahi-Roodsaz, S. et al. Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum. 56, 2957–2967 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, S. J. et al. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J. Immunol. 193, 3902–3913 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Kokkola, R. et al. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 48, 2052–2058 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. van Lent, P. L. et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann. Rheum. Dis. 67, 1750–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Zandman-Goddard, G. & Shoenfeld, Y. Infections and SLE. Autoimmunity 38, 473–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Doria, A. et al. Infections as triggers and complications of systemic lupus erythematosus. Autoimmun. Rev. 8, 24–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Rigante, D., Mazzoni, M. B. & Esposito, S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev. 13, 96–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Absher, D. M. et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 9, e1003678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marshak-Rothstein, A. & Rifkin, I. R. Immunologically active autoantigens: the role of Toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 25, 419–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Celhar, T. & Fairhurst, A. M. Toll-like receptors in systemic lupus erythematosus: potential for personalized treatment. Front. Pharmacol. 5, 265–272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Koh, Y. T. et al. Role of nucleic acid-sensing TLRs in diverse autoantibody specificities and anti-nuclear antibody-producing B cells. J. Immunol. 190, 4982–4990 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Giltiay, N. V. et al. Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells. J. Exp. Med. 210, 2773–2789 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sisirak, V. et al. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J. Exp. Med. 211, 1969–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Reed, J. H., Sim, S., Wolin, S. L., Clancy, R. M. & Buyon, J. P. Ro60 requires Y3 RNA for cell surface exposure and inflammation associated with cardiac manifestations of neonatal lupus. J. Immunol. 191, 110–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Hwang, S. H. et al. B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. J. Immunol. 189, 5786–5796 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Avalos, A. M., Busconi, L. & Marshak-Rothstein, A. Regulation of autoreactive B cell responses to endogenous TLR ligands. Autoimmunity 43, 76–83 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Means, T. K. et al. Human lupus autoantibody–DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Christensen, S. R. et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202, 321–331 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lartigue, A. et al. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J. Immunol. 177, 1349–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Nickerson, K. M. et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 184, 1840–1848 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Nündel, K. et al. Cell-intrinsic expression of TLR9 in autoreactive B cells constrains BCR/TLR7-dependent responses. J. Immunol. 194, 2504–2512 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Desnues, B. et al. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc. Natl Acad. Sci. USA 111, 1497–1502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Terkeltaub, R. Update on gout: new therapeutic strategies and options. Nat. Rev. Rheumatol. 6, 30–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Rock, K. L., Kataoka, H. & Lai, J. J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol. 9, 13–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Mylona, E. E. et al. Enhanced interleukin-1β production of PBMCs from patients with gout after stimulation with Toll-like receptor-2 ligands and urate crystals. Arthritis Res. Ther. 14, R158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, C. J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest. 116, 2262–2271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Qing, Y. F. et al. Association of TLR4 gene rs2149356 polymorphism with primary gouty arthritis in a case–control study. PLoS ONE 8, e64845 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Di Giovine, F. S., Malawista, S. E., Nuki, G. & Duff, G. W. Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. J. Immunol. 138, 3213–3218 (1987).

    CAS  PubMed  Google Scholar 

  136. Guerne, P. A., Terkeltaub, R., Zuraw, B. & Lotz, M. Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum. 32, 1443–1452 (1989).

    Article  CAS  PubMed  Google Scholar 

  137. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Holzinger, D. et al. Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol. 66, 1327–1339 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Crisan, T. O. et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann. Rheum. Dis. 75, 755–762 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Alexopoulou, L. et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat. Med. 8, 878–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Oosting, M. et al. TLR1/TLR2 heterodimers play an important role in the recognition of Borrelia spirochetes. PLoS ONE 6, e25998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schroder, N. W. et al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J. Immunol. 175, 2534–2540 (2005).

    Article  PubMed  Google Scholar 

  144. Cervantes, J. L. et al. Phagosomal signaling by Borrelia burgdorferi in human monocytes involves Toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-β. Proc. Natl Acad. Sci. USA 108, 3683–3688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wooten, R. M. et al. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J. Immunol. 168, 348–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Bolz, D. D. et al. MyD88 plays a unique role in host defense but not arthritis development in Lyme disease. J. Immunol. 173, 2003–2010 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Oosting, M. et al. Recognition of Borrelia burgdorferi by NOD2 is central for the induction of an inflammatory reaction. J. Infect. Dis. 201, 1849–1858 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Kuznik, A. et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 186, 4794–4804 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Jessop, J. D. et al. A long-term five-year randomized controlled trial of hydroxychloroquine, sodium aurothiomalate, auranofin and penicillamine in the treatment of patients with rheumatoid arthritis. Br. J. Rheumatol. 37, 992–1002 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Park, S. J., Lee, A. N. & Youn, H. S. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptor 3 by auranofin. Arch. Pharm. Res. 33, 939–945 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Costello, D. A., Carney, D. G. & Lynch, M. A. α-TLR2 antibody attenuates the Aβ-mediated inflammatory response in microglia through enhanced expression of SIGIRR. Brain Behav. Immun. 46, 70–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Reilly, M. et al. Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody. Clin. Pharmacol. Ther. 94, 593–600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. van Eden, W. XToll, a recombinant chaperonin 10 as an anti-inflammatory immunomodulator. Curr. Opin. Investig. Drugs 9, 523–533 (2008).

    CAS  PubMed  Google Scholar 

  154. Vanags, D. et al. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368, 855–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Novimmune. Novimmune reports successful completion of Phase I trial for NI-0101. [online], http://www.novimmune.com/news/pr140805.html (2014).

  156. Sanchez-Pernaute, O. et al. Citrullination enhances the pro-inflammatory response to fibrin in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 72, 1400–1406 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Divanovic, S. et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol. 6, 571–578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Thwaites, R., Chamberlain, G. & Sacre, S. Emerging role of endosomal Toll-like receptors in rheumatoid arthritis. Front. Immunol. 5, 1 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ostrach, M. Dynavax regains full rights to investigational TLR 7/9 inhibitor DV1179 following expiration of collaboration with GSK. Dynavax [online], http://investors.dynavax.com/releasedetail.cfm?releaseid=885172 (2014).

  161. Zhu, F. G. et al. A novel antagonist of Toll-like receptors 7, 8 and 9 suppresses lupus disease-associated parameters in NZBW/F1 mice. Autoimmunity. 46, 419–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Arcudi, L. Idera pharmaceuticals announces results of Phase 1 clinical trial of IMO-8400, Toll-like receptor antagonist drug candidate for autoimmune and inflammatory diseases. Idera [online], http://ir.iderapharma.com/phoenix.zhtml?c=208904&p=irol-newsArticle&ID=1834174 (2013).

  163. Sacre, S., Medghalchi, M., Gregory, B., Brennan, F. & Williams, R. Fluoxetine and citalopram exhibit potent antiinflammatory activity in human and murine models of rheumatoid arthritis and inhibit Toll-like receptors. Arthritis Rheum. 62, 683–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Kenny, E. F. et al. Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS ONE 8, e74103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mina-Osorio, P. et al. Suppression of glomerulonephritis in lupus-prone NZB × NZW mice by RN486, a selective inhibitor of Bruton's tyrosine kinase. Arthritis Rheum. 65, 2380–2391 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Ramirez-Ortiz, Z. G. et al. The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity. Nat. Immunol. 16, 495–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rice, T. W. et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med. 38, 1685–1694 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Cheng, K., Wang, X. & Yin, H. Small-molecule inhibitors of the TLR3/dsRNA complex. J. Am. Chem. Soc. 133, 3764–3767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mistry, P. et al. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proc. Natl Acad. Sci. USA 112, 5455–5460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. DeVry, C. G. et al. RDP58, a novel immunomodulatory peptide, ameliorates clinical signs of disease in the Lewis rat model of acute experimental autoimmune encephalomyelitis. J. Neuroimmunol. 152, 33–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Iyer, S. et al. Inhibition of tumor necrosis factor mRNA translation by a rationally designed immunomodulatory peptide. J. Biol. Chem. 275, 17051–17057 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Holtmann, M. M. RDP-58 (SangStat Medical). IDrugs 6, 1188–1194 (2003).

    CAS  PubMed  Google Scholar 

  173. Capolunghi, F. et al. Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients. Rheumatology (Oxford) 49, 2281–2289 (2010).

    Article  CAS  Google Scholar 

  174. Nimbus Discovery. IRAK4 inhibitors for the treatment of rheumatic diseases. Nimbus Therapeutics [online], http://www.nimbustx.com/news-events/press-releases/irak4-inhibitors-treatment-rheumatic-diseases (2012).

  175. Bahia, M. S., Kaur, M., Silakari, P. & Silakari, O. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders. Cell. Signal. 27, 1039–1055 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Ramachandran, I. R. et al. The phosphatase Src homology region 2 domain-containing phosphatase-1 is an intrinsic central regulator of dendritic cell function. J. Immunol. 186, 3934–3945 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Carty, M. et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat. Immunol. 7, 1074–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Dolan, J. et al. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics 8, 320 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gardet, A. et al. LRRK2 is involved in the IFN-γ response and host response to pathogens. J. Immunol. 185, 5577–5585 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Liu, J. et al. Identification and characterization of a unique leucine-rich repeat protein (LRRC33) that inhibits Toll-like receptor-mediated NF-κB activation. Biochem. Biophys. Res. Commun. 434, 28–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. O'Neill, L. A., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors — redefining innate immunity. Nat. Rev. Immunol. 13, 453–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Opal, S. M. et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309, 1154–1162 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Liu, W., Deyoung, B. R., Chen, X., Evanoff, D. P. & Luo, Y. RDP58 inhibits T cell-mediated bladder inflammation in an autoimmune cystitis model. J. Autoimmun. 30, 257–265 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.A.-R. is supported by grants 15-A0-00-004310-01 from the Arthritis National Research Foundation (ANRF), VENI grant 916.12.039 from the Netherlands Organization for Scientific Research and AFS 14-1-291 grant from the Dutch Arthritis Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made substantial contributions to discussion of the content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Leo A. B. Joosten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joosten, L., Abdollahi-Roodsaz, S., Dinarello, C. et al. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol 12, 344–357 (2016). https://doi.org/10.1038/nrrheum.2016.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.61

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research