Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Giant cell arteritis and polymyalgia rheumatica: current challenges and opportunities

Key Points

  • Giant cell arteritis (GCA) is best understood as an inflammatory vascular syndrome with features of cranial and/or large-vessel vasculitis, systemic inflammation and polymyalgia rheumatica (PMR), which frequently overlap

  • GCA and PMR are among the most common inflammatory rheumatic diseases in the elderly; the prevalence of these diseases is expected to increase due to ageing of the population

  • The role and value of imaging in GCA and PMR is evolving quickly

  • The pathophysiology of GCA is characterized by phases of initiation, transmural inflammation and chronic vessel wall injury and repair, each of which might be novel drug targets

  • Glucocorticoids are the standard-of-care treatment for GCA and PMR, although methotrexate is used in individual cases and anti-IL-6 therapy is now approved for the treatment of GCA

  • The selection of patients for biologic DMARD therapy, defining the best treatment strategies and the development of reliable outcome parameters are challenges in the future management of GCA and PMR

Abstract

The fields of giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) have advanced rapidly, resulting in a new understanding of these diseases. Fast-track strategies and improved awareness programmes that prevent irreversible sight loss through early diagnosis and treatment are a notable advance. Ultrasonography and other imaging techniques have been introduced into routine clinical practice and there have been promising reports on the efficacy of biologic agents, particularly IL-6 antagonists such as tocilizumab, in treating these conditions. Along with these developments, which should improve outcomes in patients with GCA and PMR, new questions and unmet needs have emerged; future research should address which pathogenetic mechanisms contribute to the different phases and clinical phenotypes of GCA, what role imaging has in the early diagnosis and monitoring of GCA and PMR, and in which patients and phases of these diseases novel biologic drugs should be used. This article discusses the implications of recent developments in our understanding of GCA and PMR, as well as the unmet needs concerning epidemiology, pathogenesis, imaging and treatment of these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenetic pathways and treatment targets in giant cell arteritis.

Similar content being viewed by others

References

  1. Buttgereit, F., Dejaco, C., Matteson, E. L. & Dasgupta, B. Polymyalgia rheumatica and giant cell arteritis: a systematic review. JAMA 315, 2442–2458 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Horton, B., Magath, T. & Brown, G. An undescribed form of arteritis of the temporal vessels. Proc. Staff Meet. Mayo Clin. 7, 700–701 (1932).

    Google Scholar 

  3. Paulley, J. W. & Hughes, J. P. Giant-cell arteritis, or arteritis of the aged. Br. Med. J. 2, 1562–1567 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hamrin, B. Polymyalgia arteritica. Acta Med. Scand. Suppl. 533, 1–131 (1972).

    CAS  PubMed  Google Scholar 

  5. Hunder, G. G. et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum. 33, 1122–1128 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Dejaco, C., Duftner, C., Buttgereit, F., Matteson, E. L. & Dasgupta, B. The spectrum of giant cell arteritis and polymyalgia rheumatica: revisiting the concept of the disease. Rheumatology (Oxford) 56, 506–515 (2016).

    Google Scholar 

  7. Evans, J. M., O'Fallon, W. M. & Hunder, G. G. Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann. Intern. Med. 122, 502–507 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Salvarani, C., Cantini, F., Boiardi, L. & Hunder, G. G. Polymyalgia rheumatica and giant-cell arteritis. N. Engl. J. Med. 347, 261–271 (2002).

    Article  PubMed  Google Scholar 

  9. Dejaco, C., Duftner, C., Dasgupta, B., Matteson, E. L. & Schirmer, M. Polymyalgia rheumatica and giant cell arteritis: management of two diseases of the elderly. Aging Health 7, 633–645 (2011).

    Article  Google Scholar 

  10. Nesher, G. et al. Risk factors for cranial ischemic complications in giant cell arteritis. Medicine (Baltimore) 83, 114–122 (2004).

    Article  Google Scholar 

  11. Salvarani, C. et al. Risk factors for visual loss in an Italian population-based cohort of patients with giant cell arteritis. Arthritis Rheum. 53, 293–297 (2005).

    Article  PubMed  Google Scholar 

  12. Patil, P. et al. Fast track pathway reduces sight loss in giant cell arteritis: results of a longitudinal observational cohort study. Clin. Exp. Rheumatol. 33, S-103-6 (2015).

    PubMed  Google Scholar 

  13. Diamantopoulos, A. P., Haugeberg, G., Lindland, A. & Myklebust, G. The fast-track ultrasound clinic for early diagnosis of giant cell arteritis significantly reduces permanent visual impairment: towards a more effective strategy to improve clinical outcome in giant cell arteritis? Rheumatology (Oxford) 55, 66–70 (2016).

    Article  Google Scholar 

  14. Broder, M. S. et al. Corticosteroid-related adverse events in patients with giant cell arteritis: A claims-based analysis. Semin. Arthritis Rheum. 46, 246–252 (2016).

    Article  PubMed  Google Scholar 

  15. Alba, M. A. et al. Relapses in patients with giant cell arteritis: prevalence, characteristics, and associated clinical findings in a longitudinally followed cohort of 106 patients. Medicine (Baltimore) 93, 194–201 (2014).

    Article  Google Scholar 

  16. Hachulla, E. et al. Prognostic factors and long-term evolution in a cohort of 133 patients with giant cell arteritis. Clin. Exp. Rheumatol. 19, 171–176 (2001).

    CAS  PubMed  Google Scholar 

  17. Kermani, T. A. et al. Disease relapses among patients with giant cell arteritis: a prospective, longitudinal cohort study. J. Rheumatol. 42, 1213–1217 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Villiger, P. M. et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 387, 1921–1927 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Stone, J. et al. Tocilizumab for sustained glucocorticoid-free remission in giant cell arteritis. N. Engl. J. Med. 377, 317–328 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Dejaco, C. et al. 2015 Recommendations for the management of polymyalgia rheumatica: a European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann. Rheum. Dis. 74, 1799–1807 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Dejaco, C. et al. 2015 Recommendations for the management of polymyalgia rheumatica: A European League Against Rheumatism/American College of Rheumatology Collaborative Initiative. Arthritis Rheumatol. 67, 2569–2580 (2015).

    Article  PubMed  Google Scholar 

  22. Dasgupta, B. et al. BSR and BHPR guidelines for the management of giant cell arteritis. Rheumatology (Oxford). 49, 1594–1597 (2010).

    Article  PubMed  Google Scholar 

  23. Mahr, A. D. et al. Adjunctive methotrexate for treatment of giant cell arteritis: an individual patient data meta-analysis. Arthritis Rheum. 56, 2789–2797 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smeeth, L., Cook, C. & Hall, A. J. Incidence of diagnosed polymyalgia rheumatica and temporal arteritis in the United Kingdom, 1990–2001. Ann. Rheum. Dis. 65, 1093–1098 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gran, J. T. & Myklebust, G. The incidence of polymyalgia rheumatica and temporal arteritis in the county of Aust Agder, south Norway: a prospective study 1987–1994. J. Rheumatol. 24, 1739–1743 (1997).

    CAS  PubMed  Google Scholar 

  27. Doran, M. F., Crowson, C. S., O'Fallon, W. M., Hunder, G. G. & Gabriel, S. E. Trends in the incidence of polymyalgia rheumatica over a 30 year period in Olmsted County, Minnesota, USA. J. Rheumatol. 29, 1694–1697 (2002).

    PubMed  Google Scholar 

  28. Salvarani, C., Gabriel, S. E., O'Fallon, W. M. & Hunder, G. G. The incidence of giant cell arteritis in Olmsted County, Minnesota: apparent fluctuations in a cyclic pattern. Ann. Intern. Med. 123, 192–194 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Chandran, A. K., Udayakumar, P. D., Crowson, C. S., Warrington, K. J. & Matteson, E. L. The incidence of giant cell arteritis in Olmsted County, Minnesota, over a 60-year period 1950–2009. Scand. J. Rheumatol. 44, 215–218 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramstead, C. L. & Patel, A. D. Giant cell arteritis in a neuro-ophthalmology clinic in Saskatoon, 1998–2003. Can. J. Ophthalmol. 42, 295–298 (2007).

    PubMed  Google Scholar 

  31. Chaudhry, I. A. et al. Epidemiology of giant-cell arteritis in an Arab population: a 22-year study. Br. J. Ophthalmol. 91, 715–718 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Artal, N. M. et al. Giant cell arteritis in a Hispanic population. Ophthalmology 109, 1757 (2002).

    Article  PubMed  Google Scholar 

  33. De Smit, E., Palmer, A. J. & Hewitt, A. W. Projected worldwide disease burden from giant cell arteritis by 2050. J. Rheumatol. 42, 119–125 (2015).

    Article  PubMed  Google Scholar 

  34. Brack, A., Martinez-Taboada, V., Stanson, A., Goronzy, J. J. & Weyand, C. M. Disease pattern in cranial and large-vessel giant cell arteritis. Arthritis Rheum. 42, 311–317 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Diamantopoulos, A. P. et al. Diagnostic value of color Doppler ultrasonography of temporal arteries and large vessels in giant cell arteritis: a consecutive case series. Arthritis Care Res. (Hoboken) 66, 113–119 (2014).

    Article  Google Scholar 

  36. Luqmani, R. et al. The Role of Ultrasound Compared to Biopsy of Temporal Arteries in the Diagnosis and Treatment of Giant Cell Arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study. Health Technol. Assess. 20, 1–238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roth, A. M., Milsow, L. & Keltner, J. L. The ultimate diagnoses of patients undergoing temporal artery biopsies. Arch. Ophthalmol. 102, 901–903 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Hall, S. et al. The therapeutic impact of temporal artery biopsy. Lancet 2, 1217–1220 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Allsop, C. J. & Gallagher, P. J. Temporal artery biopsy in giant-cell arteritis. A reappraisal. Am. J. Surg. Pathol. 5, 317–323 (1981).

    Article  CAS  PubMed  Google Scholar 

  40. Blockmans, D. et al. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 55, 131–137 (2006).

    Article  PubMed  Google Scholar 

  41. Prieto-González, S. et al. Large vessel involvement in biopsy-proven giant cell arteritis: prospective study in 40 newly diagnosed patients using CT angiography. Ann. Rheum. Dis. 71, 1170–1176 (2012).

    Article  PubMed  Google Scholar 

  42. Kermani, T. A. et al. Large-vessel involvement in giant cell arteritis: a population-based cohort study of the incidence-trends and prognosis. Ann. Rheum. Dis. 72, 1989–1994 (2013).

    Article  PubMed  Google Scholar 

  43. Aschwanden, M. et al. Vascular involvement in patients with giant cell arteritis determined by duplex sonography of 2 × 11 arterial regions. Ann. Rheum. Dis. 69, 1356–1359 (2010).

    Article  PubMed  Google Scholar 

  44. Karahaliou, M. et al. Colour duplex sonography of temporal arteries before decision for biopsy: a prospective study in 55 patients with suspected giant cell arteritis. Arthritis Res. Ther. 8, R116 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nesher, G., Shemesh, D., Mates, M., Sonnenblick, M. & Abramowitz, H. B. The predictive value of the halo sign in color Doppler ultrasonography of the temporal arteries for diagnosing giant cell arteritis. J. Rheumatol. 29, 1224–1226 (2002).

    PubMed  Google Scholar 

  46. Dasgupta, B. et al. 2012 provisional classification criteria for polymyalgia rheumatica: a European League Against Rheumatism/American College of Rheumatology collaborative initiative. Arthritis Rheum. 64, 943–954 (2012).

    Article  PubMed  Google Scholar 

  47. Dasgupta, B. et al. 2012 provisional classification criteria for polymyalgia rheumatica: a European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann. Rheum. Dis. 71, 484–492 (2012).

    Article  PubMed  Google Scholar 

  48. Falsetti, P., Acciai, C., Volpe, A. & Lenzi, L. Ultrasonography in early assessment of elderly patients with polymyalgic symptoms: a role in predicting diagnostic outcome? Scand. J. Rheumatol. 40, 57–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. de Boysson, H. et al. Giant-cell arteritis without cranial manifestations. Medicine (Baltimore) 95, e3818 (2016).

    Article  Google Scholar 

  50. Camellino, D. & Cimmino, M. A. Imaging of polymyalgia rheumatica: indications on its pathogenesis, diagnosis and prognosis. Rheumatology (Oxford). 51, 77–86 (2012).

    Article  PubMed  Google Scholar 

  51. Camellino, D. et al. Interspinous bursitis is common in polymyalgia rheumatica, but is not associated with spinal pain. Arthritis Res. Ther. 16, 492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cimmino, M. A. et al. High frequency of capsular knee involvement in polymyalgia rheumatica/giant cell arteritis patients studied by positron emission tomography. Rheumatology (Oxford) 52, 1865–1872 (2013).

    Article  Google Scholar 

  53. Blockmans, D. et al. Repetitive 18-fluorodeoxyglucose positron emission tomography in isolated polymyalgia rheumatica: a prospective study in 35 patients. Rheumatology (Oxford). 46, 672–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Lavado-Pérez, C. et al. 18F-FDG PET/CT for the detection of large vessel vasculitis in patients with polymyalgia rheumatica. Rev. Esp. Med. Nucl. Imagen. Mol. 34, 275–281 (2015).

    PubMed  Google Scholar 

  55. Rehak, Z. et al. Various forms of 18F-FDG PET and PET/CT findings in patients with polymyalgia rheumatica. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 159, 629–636 (2015).

    Article  PubMed  Google Scholar 

  56. Lariviere, D. et al. Positron emission tomography and computed tomography angiography for the diagnosis of giant cell arteritis: a real-life prospective study. Medicine (Baltimore) 95, e4146 (2016).

    Article  Google Scholar 

  57. Nakagomi, D. et al. Development of a score for assessment of radiologic damage in large-vessel vasculitis (Combined Arteritis Damage Score, CARDS). Clin. Exp. Rheumatol. 35 (Suppl. 103), 139–145 (2014).

    Google Scholar 

  58. Klink, T. et al. Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis — results from a multicenter trial. Radiology 273, 844–852 (2014).

    Article  PubMed  Google Scholar 

  59. Goll, C. et al. Feasibility study: 7 T MRI in giant cell arteritis. Graefes Arch. Clin. Exp. Ophthalmol. 254, 1111–1116 (2016).

    Article  PubMed  Google Scholar 

  60. Veldhoen, S. et al. MRI displays involvement of the temporalis muscle and the deep temporal artery in patients with giant cell arteritis. Eur. Radiol. 24, 2971–2979 (2014).

    Article  PubMed  Google Scholar 

  61. Einspieler, I. et al. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study. Eur. J. Nucl. Med. Mol. Imaging 42, 1012–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Habib, H. M., Essa, A. A. & Hassan, A. A. Color duplex ultrasonography of temporal arteries: role in diagnosis and follow-up of suspected cases of temporal arteritis. Clin. Rheumatol. 31, 231–237 (2012).

    Article  PubMed  Google Scholar 

  63. De Miguel, E. et al. The utility and sensitivity of colour Doppler ultrasound in monitoring changes in giant cell arteritis. Clin. Exp. Rheumatol. 30, S34–S38 (2012).

    PubMed  Google Scholar 

  64. Schmidt, W. A., Kraft, H. E., Vorpahl, K., Völker, L. & Gromnica-Ihle, E. J. Color duplex ultrasonography in the diagnosis of temporal arteritis. N. Engl. J. Med. 337, 1336–1342 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Czihal, M. et al. Impact of cranial and axillary/subclavian artery involvement by color duplex sonography on response to treatment in giant cell arteritis. J. Vasc. Surg. 61, 1285–1291 (2015).

    Article  PubMed  Google Scholar 

  66. Prieto-González, S. et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant-cell arteritis. A prospective, longitudinal study. Medicine (Baltimore) 94, e486 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  67. Evans, J. M., Bowles, C. A., Bjornsson, J., Mullany, C. J. & Hunder, G. G. Thoracic aortic aneurysm and rupture in giant cell arteritis. A descriptive study of 41 cases. Arthritis Rheum. 37, 1539–1547 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Nuenninghoff, D. M., Hunder, G. G., Christianson, T. J. H., McClelland, R. L. & Matteson, E. L. Incidence and predictors of large-artery complication (aortic aneurysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis: a population-based study over 50 years. Arthritis Rheum. 48, 3522–3531 (2003).

    Article  PubMed  Google Scholar 

  69. Spira, D., Xenitidis, T., Henes, J. & Horger, M. MRI parametric monitoring of biological therapies in primary large vessel vasculitides: a pilot study. Br. J. Radiol. 89, 20150892 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Blockmans, D. et al. Relationship between fluorodeoxyglucose uptake in the large vessels and late aortic diameter in giant cell arteritis. Rheumatology (Oxford) 47, 1179–1184 (2008).

    Article  CAS  Google Scholar 

  71. Robson, J. C. et al. The relative risk of aortic aneurysm in patients with giant cell arteritis compared with the general population of the UK. Ann. Rheum. Dis. 74, 129–135 (2015).

    Article  PubMed  Google Scholar 

  72. Pugliese, F. et al. Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. J. Am. Coll. Cardiol. 56, 653–661 (2010).

    Article  PubMed  Google Scholar 

  73. Schinkel, A. F. L., van den Oord, S. C. H., van der Steen, A. F. W., van Laar, J. A. M. & Sijbrands, E. J. G. Utility of contrast-enhanced ultrasound for the assessment of the carotid artery wall in patients with Takayasu or giant cell arteritis. Eur. Heart J. Cardiovasc. Imaging 15, 541–546 (2014).

    Article  PubMed  Google Scholar 

  74. Giordana, P. et al. Contrast-enhanced ultrasound of carotid artery wall in Takayasu disease: first evidence of application in diagnosis and monitoring of response to treatment. Circulation 124, 245–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Magnoni, M. et al. Assessment of Takayasu arteritis activity by carotid contrast-enhanced ultrasound. Circ. Cardiovasc. Imaging 4, e1–e2 (2011).

    Article  PubMed  Google Scholar 

  76. Germano, G. et al. Contrast-enhanced ultrasound of the carotid artery in patients with large vessel vasculitis: correlation with positron emission tomography findings. Arthritis Care Res. (Hoboken) 69, 143–149 (2017).

    Article  Google Scholar 

  77. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi, W. et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS ONE 8, e81499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ferrara, D., Waheed, N. K. & Duker, J. S. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog. Retin. Eye Res. 52, 130–155 (2016).

    Article  PubMed  Google Scholar 

  80. Chatelain, D. et al. Small-vessel vasculitis surrounding an uninflamed temporal artery: a new diagnostic criterion for polymyalgia rheumatica? Arthritis Rheum. 58, 2565–2573 (2008).

    Article  PubMed  Google Scholar 

  81. Pryshchep, O., Ma-Krupa, W., Younge, B. R., Goronzy, J. J. & Weyand, C. M. Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation 118, 1276–1284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, H. et al. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc. Natl Acad. Sci. USA 114, E970–E979 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wen, Z. et al. NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J. Clin. Invest. 126, 1953–1967 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dejaco, C. et al. NKG2D stimulated T-cell autoreactivity in giant cell arteritis and polymyalgia rheumatica. Ann. Rheum. Dis. 72, 1852–1859 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Bhatt, A. S. et al. In search of a candidate pathogen for giant cell arteritis: sequencing based characterization of the giant cell arteritis microbiome. Arthritis Rheumatol. 66, 1939–1944 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gabriel, S. E. et al. The role of parvovirus B19 in the pathogenesis of giant cell arteritis: a preliminary evaluation. Arthritis Rheum. 42, 1255–1258 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Wagner, A. D. et al. Detection of Chlamydia pneumoniae in giant cell vasculitis and correlation with the topographic arrangement of tissue-infiltrating dendritic cells. Arthritis Rheum. 43, 1543–1551 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Nagel, M. A. et al. Analysis of Varicella–Zoster virus in temporal arteries biopsy positive and negative for giant cell arteritis. JAMA Neurol. 72, 1281–1287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Samson, M. et al. Involvement and prognosis value of CD8+ T cells in giant cell arteritis. J. Autoimmun. 72, 73–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Deng, J., Younge, B. R., Olshen, R. A., Goronzy, J. J. & Weyand, C. M. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121, 906–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nadkarni, S. et al. Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression. Circ. Res. 114, 242–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. van der Geest, K. S. M. et al. Disturbed B cell homeostasis in patients with newly-diagnosed giant cell arteritis and polymyalgia rheumatica. Arthritis Rheumatol. 66, 1927–1938 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Kaiser, M., Younge, B., Björnsson, J., Goronzy, J. J. & Weyand, C. M. Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. Am. J. Pathol. 155, 765–774 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaiser, M., Weyand, C. M., Björnsson, J. & Goronzy, J. J. Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. Arthritis Rheum. 41, 623–633 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Wagner, A. D., Björnsson, J., Bartley, G. B., Goronzy, J. J. & Weyand, C. M. Interferon-γ-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located distant from the site of pathology. Am. J. Pathol. 148, 1925–1933 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dasgupta, B. & Panayi, G. S. Interleukin-6 in serum of patients with polymyalgia rheumatica and giant cell arteritis. Br. J. Rheumatol. 29, 456–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Ghoreschi, K., Laurence, A. & O'Shea, J. J. Janus kinases in immune cell signaling. Immunol. Rev. 228, 273–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kohlhuber, F. et al. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol. Cell. Biol. 17, 695–706 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Müller, M. et al. The protein tyrosine kinase JAK1 complements defects in interferon-α/β and -γ signal transduction. Nature 366, 129–135 (1993).

    Article  PubMed  Google Scholar 

  100. Lee, E. B. et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370, 2377–2386 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Genovese, M. C. et al. Baricitinib in patients with refractory rheumatoid arthritis. N. Engl. J. Med. 374, 1243–1252 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Hatemi, G. et al. Apremilast for Behçet's syndrome — a phase 2, placebo-controlled study. N. Engl. J. Med. 372, 1510–1518 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Kavanaugh, A. et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann. Rheum. Dis. 73, 1020–1026 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Man, H.-W. et al. Discovery of (S)-N-[2-[1-(3-ethoxy-4-methoxyphenyl)-2-methanesulfonylethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl] acetamide (apremilast), a potent and orally active phosphodiesterase 4 and tumor necrosis factor-α inhibitor. J. Med. Chem. 52, 1522–1524 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Hernández-Rodríguez, J. et al. Tissue production of pro-inflammatory cytokines (IL-1β, TNFα and IL-6) correlates with the intensity of the systemic inflammatory response and with corticosteroid requirements in giant-cell arteritis. Rheumatology (Oxford) 43, 294–301 (2004).

    Article  CAS  Google Scholar 

  107. Visvanathan, S. et al. Tissue and serum markers of inflammation during the follow-up of patients with giant-cell arteritis — a prospective longitudinal study. Rheumatology (Oxford) 50, 2061–2070 (2011).

    Article  CAS  Google Scholar 

  108. Cid, M. C. et al. Immunohistochemical analysis of lymphoid and macrophage cell subsets and their immunologic activation markers in temporal arteritis. Influence of corticosteroid treatment. Arthritis Rheum. 32, 884–893 (1989).

    CAS  PubMed  Google Scholar 

  109. Ciccia, F. et al. Ectopic expression of CXCL13, BAFF, APRIL and LT-β is associated with artery tertiary lymphoid organs in giant cell arteritis. Ann. Rheum. Dis. 76, 235–243 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Takemura, S., Klimiuk, P. A., Braun, A., Goronzy, J. J. & Weyand, C. M. T cell activation in rheumatoid synovium is B cell dependent. J. Immunol. 167, 4710–4718 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Lozano, E., Segarra, M., Garcia-Martinez, A., Hernandez-Rodriguez, J. & Cid, M. C. Imatinib mesylate inhibits in vitro and ex vivo biological responses related to vascular occlusion in giant cell arteritis. Ann. Rheum. Dis. 67, 1581–1588 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Ly, K. H. et al. Neurotrophins are expressed in giant cell arteritis lesions and may contribute to vascular remodeling. Arthritis Res. Ther. 16, 487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dimitrijevic, I., Andersson, C., Rissler, P. & Edvinsson, L. Increased tissue endothelin-1 and endothelin-B receptor expression in temporal arteries from patients with giant cell arteritis. Ophthalmology 117, 628–636 (2010).

    Article  PubMed  Google Scholar 

  114. Kida, T. et al. Chronic treatment with PDGF-BB and endothelin-1 synergistically induces vascular hyperplasia and loss of contractility in organ-cultured rat tail artery. Atherosclerosis 214, 288–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Planas-Rigol, E. et al. Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Ann. Rheum. Dis. 76, 1624–1634 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Lozano, E. et al. Increased expression of the endothelin system in arterial lesions from patients with giant-cell arteritis: association between elevated plasma endothelin levels and the development of ischaemic events. Ann. Rheum. Dis. 69, 434–442 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. O'Neill, L. et al. Regulation of inflammation and angiogenesis in giant cell arteritis by acute-phase serum amyloid A. Arthritis Rheumatol. 67, 2447–2456 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Segarra, M. et al. Gelatinase expression and proteolytic activity in giant-cell arteritis. Ann. Rheum. Dis. 66, 1429–1435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mukhtyar, C. et al. EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 68, 318–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Buttgereit, F., Spies, C. M. & Bijlsma, J. W. J. Novel glucocorticoids: where are we now and where do we want to go? Clin. Exp. Rheumatol. 33, S29–S33 (2015).

    PubMed  Google Scholar 

  121. Sundahl, N., Bridelance, J., Libert, C., De Bosscher, K. & Beck, I. M. Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. Pharmacol. Ther. 152, 28–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. van Lierop, M.-J. C. et al. Org 214007-0: A novel non-steroidal selective glucocorticoid receptor modulator with full anti-inflammatory properties and improved therapeutic index. PLoS ONE 7, e48385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hosseini, S. H., Maleki, A., Eshraghi, H. R. & Hamidi, M. Preparation and in vitro/pharmacokinetic/pharmacodynamic evaluation of a slow-release nano-liposomal form of prednisolone. Drug Deliv. 23, 3008–3016 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Buttgereit, F. et al. Low-dose prednisone chronotherapy for rheumatoid arthritis: a randomised clinical trial (CAPRA-2). Ann. Rheum. Dis. 72, 204–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Buttgereit, F. et al. Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): a double-blind, randomised controlled trial. Lancet 371, 205–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Cutolo, M., Hopp, M., Liebscher, S., Dasgupta, B. & Buttgereit, F. Modified-release prednisone for polymyalgia rheumatica: a multicentre, randomised, active-controlled, double-blind, parallel-group study. RMD Open 3, e000426 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Raine, C. et al. A 26-week study comparing the efficacy and safety of a modified-release prednisone with immediate-release prednisolone in newly-diagnosed cases of giant cell arteritis. Int. J. Rheum. Dis. http://dx.doi.org/10.1111/1756-185X.13149 (2017).

  128. Dejaco, C. et al. Current evidence for therapeutic interventions and prognostic factors in polymyalgia rheumatica: a systematic literature review informing the 2015 European League Against Rheumatism/American College of Rheumatology recommendations for the management of po. Ann. Rheum. Dis. 74, 1808–1817 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Hoffman, G. S. et al. A multicenter, randomized, double-blind, placebo-controlled trial of adjuvant methotrexate treatment for giant cell arteritis. Arthritis Rheum. 46, 1309–1318 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. van der Veen, M. J., Dinant, H. J., van Booma-Frankfort, C., van Albada-Kuipers, G. A. & Bijlsma, J. W. Can methotrexate be used as a steroid sparing agent in the treatment of polymyalgia rheumatica and giant cell arteritis? Ann. Rheum. Dis. 55, 218–223 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Spiera, R. F. et al. A prospective, double-blind, randomized, placebo controlled trial of methotrexate in the treatment of giant cell arteritis (GCA). Clin. Exp. Rheumatol. 19, 495–501 (2001).

    CAS  PubMed  Google Scholar 

  132. Adizie, T., Christidis, D., Dharmapaliah, C., Borg, F. & Dasgupta, B. Efficacy and tolerability of leflunomide in difficult-to-treat polymyalgia rheumatica and giant cell arteritis: a case series. Int. J. Clin. Pract. 66, 906–909 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Diamantopoulos, A. P., Hetland, H. & Myklebust, G. Leflunomide as a corticosteroid-sparing agent in giant cell arteritis and polymyalgia rheumatica: a case series. Biomed. Res. Int. 2013, 120638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hoffman, G. S. et al. Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: a randomized trial. Ann. Intern. Med. 146, 621–630 (2007).

    Article  PubMed  Google Scholar 

  135. Salvarani, C. et al. Infliximab plus prednisone or placebo plus prednisone for the initial treatment of polymyalgia rheumatica: a randomized trial. Ann. Intern. Med. 146, 631–639 (2007).

    Article  PubMed  Google Scholar 

  136. Seror, R. et al. Adalimumab for steroid sparing in patients with giant-cell arteritis: results of a multicentre randomised controlled trial. Ann. Rheum. Dis. 73, 2074–2081 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Martínez-Taboada, V. M. et al. A double-blind placebo controlled trial of etanercept in patients with giant cell arteritis and corticosteroid side effects. Ann. Rheum. Dis. 67, 625–630 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Kreiner, F. & Galbo, H. Effect of etanercept in polymyalgia rheumatica: a randomized controlled trial. Arthritis Res. Ther. 12, R176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lally, L., Forbess, L., Hatzis, C. & Spiera, R. Efficacy and safety of tocilizumab for the treatment of polymyalgia rheumatica. Arthritis Rheumatol. 68, 2550–2554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Devauchelle-Pensec, V. et al. Efficacy of first-line tocilizumab therapy in early polymyalgia rheumatica: a prospective longitudinal study. Ann. Rheum. Dis. 75, 1506–1510 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Macchioni, P. et al. Tocilizumab for polymyalgia rheumatica: report of two cases and review of the literature. Semin. Arthritis Rheum. 43, 113–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Unizony, S. et al. Tocilizumab for the treatment of large-vessel vasculitis (giant cell arteritis, Takayasu arteritis) and polymyalgia rheumatica. Arthritis Care Res. (Hoboken) 64, 1720–1729 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Toussirot, É., Martin, A., Soubrier, M., Redeker, S. & Régent, A. Rapid and sustained response to tocilizumab in patients with polymyalgia rheumatica resistant or intolerant to glucocorticoids: a multicenter open-label study. J. Rheumatol. 43, 249–251 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Régent, A. et al. Tocilizumab in giant cell arteritis: a multicenter retrospective study of 34 patients. J. Rheumatol. 43, 1547–1552 (2016).

    Article  PubMed  Google Scholar 

  145. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT02531633 (2017).

  146. Matteson, E. L. et al. A 2-week single-blind, randomized, 3-arm proof of concept study of the effects of secukinumab (anti-IL17 mAb), canakinumab (anti IL-1 b mAb), or corticosteroids on initial disease activity scores in patients with PMR, followed by an open-label extension trial [abstract]. Arthritis Rheumatol. 66, S391 (2014).

    Google Scholar 

  147. EU Clinical Trials Register. A randomised, double-blind, placebo-controlled proof-of concept study of the efficacy and safety of gevokizumab in the treatment of patients with giant cell arteritis [EudraCT No. 2013-002778-38]. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-002778-38/ES (2014).

  148. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT01965145 (2015).

  149. Conway, R. et al. Ustekinumab for the treatment of refractory giant cell arteritis. Ann. Rheum. Dis. 75, 1578–1579 (2016).

    Article  PubMed  Google Scholar 

  150. Brack, A. et al. Giant cell vasculitis is a T cell-dependent disease. Mol. Med. 3, 530–543 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rittner, H. L. et al. Tissue-destructive macrophages in giant cell arteritis. Circ. Res. 84, 1050–1058 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Langford, C. A. et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 69, 837–845 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Langford, C. A. et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of Takayasu arteritis. Arthritis Rheumatol. 69, 846–853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bhatia, A., Ell, P. J. & Edwards, J. C. W. Anti-CD20 monoclonal antibody (rituximab) as an adjunct in the treatment of giant cell arteritis. Ann. Rheum. Dis. 64, 1099–1100 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mayrbaeurl, B., Hinterreiter, M., Burgstaller, S., Windpessl, M. & Thaler, J. The first case of a patient with neutropenia and giant-cell arteritis treated with rituximab. Clin. Rheumatol. 26, 1597–1598 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Kremers, H. M. et al. Relapse in a population based cohort of patients with polymyalgia rheumatica. J. Rheumatol. 32, 65–73 (2005).

    PubMed  Google Scholar 

  157. Garcia-Martinez, A. et al. Development of aortic aneurysm/dilatation during the followup of patients with giant cell arteritis: a cross-sectional screening of fifty-four prospectively followed patients. Arthritis Rheum. 59, 422–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Proven, A., Gabriel, S. E., Orces, C., O'Fallon, W. M. & Hunder, G. G. Glucocorticoid therapy in giant cell arteritis: duration and adverse outcomes. Arthritis Rheum. 49, 703–708 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Gabriel, S. E., Sunku, J., Salvarani, C., O'Fallon, W. M. & Hunder, G. G. Adverse outcomes of antiinflammatory therapy among patients with polymyalgia rheumatica. Arthritis Rheum. 40, 1873–1878 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Nesher, G., Nesher, R., Mates, M., Sonnenblick, M. & Breuer, G. S. Giant cell arteritis: intensity of the initial systemic inflammatory response and the course of the disease. Clin. Exp. Rheumatol. 26, S30–S34 (2008).

    CAS  PubMed  Google Scholar 

  161. Mackie, S. L. et al. Polymyalgia rheumatica (PMR) special interest group at OMERACT 11: outcomes of importance for patients with PMR. J. Rheumatol. 41, 819–823 (2014).

    Article  PubMed  Google Scholar 

  162. Twohig, H., Mitchell, C., Mallen, C., Adebajo, A. & Mathers, N. 'I suddenly felt I'd aged': a qualitative study of patient experiences of polymyalgia rheumatica (PMR). Patient Educ. Couns. 98, 645–650 (2015).

    Article  PubMed  Google Scholar 

  163. Gilbert, K. Polymyalgia Rheumatica and Giant Cell Arteritis: a Survival Guide. (CreateSpace, 2014).

    Google Scholar 

  164. Dejaco, C. et al. Definition of remission and relapse in polymyalgia rheumatica: data from a literature search compared with a Delphi-based expert consensus. Ann. Rheum. Dis. 70, 447–453 (2011).

    Article  PubMed  Google Scholar 

  165. Leeb, B. F., Rintelen, B., Sautner, J., Fassl, C. & Bird, H. A. The polymyalgia rheumatica activity score in daily use: proposal for a definition of remission. Arthritis Rheum. 57, 810–815 (2007).

    Article  PubMed  Google Scholar 

  166. Castell, J. V. et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 242, 237–239 (1989).

    Article  CAS  PubMed  Google Scholar 

  167. Roche, N. E. et al. Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis Rheum. 36, 1286–1294 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank K.S.M. van der Geest for help in preparing Figure 1 and C. Mackerness for administratively facilitating this Review.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Bhaskar Dasgupta.

Ethics declarations

Competing interests

C.D. declares that he has received consultancy fees and honoraria from AbbVie, Celgene, Lilly, Merck, MSD, Novartis, Pfizer, Roche, Sandoz and UCB, and unrestricted grant support from MSD and Pfizer, and has acted as a consultant and advisory board member for GSK. E.B. declares that she has received consultancy fees from Roche and an unrestricted grant from Janssen. J.M. declares that he has received consultancy fees and honoraria from Novartis and Roche. F.B. declares that he has received consultancy fees, honoraria and travel expenses from Galapagos, Horizon Pharma (formerly Nitec Pharma), Mundipharma and Roche and grant support from Horizon Pharma, and that he has served as co-principal investigator and site investigator in a Mundipharma-sponsored trial in PMR investigating the effects of modified-release prednisone. E.L.M. declares that he has served as coordinating investigator in a Novartis-sponsored PRM trial, as a consultant in a GSK-sponsored PMR trial, as a consultant for Endocyte and GSK and as a site investigator in GCA trials sponsored by Bristol Meyer Squibb, Genentech, GSK and Hoffman-LaRoche, and that he is an author and editor for UpToDate and Paradigm. B.D. declares that he has acted as a consultant and advisory board member for GSK, Merck, Mundipharma, Pfizer, Roche, Servier and Sobi) and that he has received unrestricted grant support from Napp and Roche and honoraria from Merck and UCB.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejaco, C., Brouwer, E., Mason, J. et al. Giant cell arteritis and polymyalgia rheumatica: current challenges and opportunities. Nat Rev Rheumatol 13, 578–592 (2017). https://doi.org/10.1038/nrrheum.2017.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.142

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research