Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancing the efficacy of cancer vaccines in urologic oncology: new directions

Abstract

Immunotherapeutic interventions have long been utilized in urologic oncology for the treatment of metastatic renal cell or superficial transitional cell carcinoma. Most recently, the first active specific immunotherapeutic approach, a cancer vaccine, has passed the final phase of human testing and its approval by the FDA is pending. However, evidence suggests that the full protective and therapeutic potential of cancer vaccines has not yet been achieved. Through multiple mechanisms, tumors promote conditions in the tumor-bearing host that mitigate or even eliminate the vaccine-induced antitumor response. Restoration of the impaired immune function is, therefore, imperative for achieving optimum vaccine efficacy. Targeted pharmacological interventions are capable of overcoming tumor-mediated immunosuppression, and thereby enable cancer vaccination to reach its full therapeutic potential.

Key Points

  • Cancer vaccines are designed to stimulate an antitumor immune response via expansion of the cellular arm of the immune system, especially T cells or natural killer cells

  • At present, the therapeutic effect of cancer vaccines in patients with advanced genitourinary cancers is limited

  • In patients with cancer, tumors promote immunosuppression via multiple mechanisms including secretion of tumor-derived factors, mobilization of bone-marrow-derived suppressor myeloid cells and induction of T-regulatory cells

  • An immunosuppressive microenvironment helps cancer cells to evade immune recognition and immune-mediated destruction

  • Simultaneous targeting of tumor-induced immune suppression and administration of a cancer vaccine has great potential to boost the antitumor immune response and produce a more-powerful therapeutic effect than vaccination alone

  • Clinical trials that are investigating combinatorial approaches that entail abrogation of tumor-induced immunosuppression followed by active immunotherapy are ongoing in many academic and industry programs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The T-cell response against cancer.
Figure 2: Elevated numbers of immunosuppressive myeloid cells in the peripheral blood of patients with cancer.
Figure 3: Tumor-infiltrated myeloid cells contribute to the immunosuppressive network in tumors.

Similar content being viewed by others

References

  1. Vieweg, J. Immunotherapy for advanced prostate cancer. Rev. Urol. 9 (Suppl. 1), S29–S38 (2007).

    PubMed  PubMed Central  Google Scholar 

  2. Schellhammer, P. F. et al. A randomized, double-blind, placebo-controlled, multi-center, phase III trial of sipuleucel-T in men with metastatic, androgen independent prostatic adenocarcinoma (AIPC) [abstract LBA9]. Presented at the American Urological Association Annual Meeting [online], (2009).

  3. Vieweg, J. Future directions for vaccine-based therapies. Urol. Oncol. 24, 448–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Vieweg, J. & Dannull, J. Technology Insight: vaccine therapy for prostate cancer. Nat. Clin. Pract. Urol. 2, 44–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2005).

    Article  CAS  Google Scholar 

  6. Pardoll, D. & Allison, J. Cancer immunotherapy: breaking the barriers to harvest the crop. Nat. Med. 10, 887–892 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Gilboa, E. The promise of cancer vaccines. Nat. Rev. Cancer 4, 401–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 253–274 (2005).

    Article  CAS  Google Scholar 

  10. Vieweg, J., Su, Z., Dahm, P. & Kusmartsev, S. Reversal of tumor-induced immune suppression. Clin. Cancer Res. 13, 727–732 (2007).

    Article  Google Scholar 

  11. Rabinovich, G. A., Sotomayor, E. M. & Gabrilovich, D. I. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dunn, G., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Small, E. et al. A phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (CRPC) [abstract 7]. Presented at the Genitourinary Cancers Symposium, American Society of Clinical Oncology (2009).

    Google Scholar 

  15. Brandau, S. Local and systemic immune suppression in bladder cancer. J. Urol. 177, 12–13 (2007).

    Article  PubMed  Google Scholar 

  16. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kusmartsev, S. et al. Reversal of myeloid cell-mediated immunosuppression on patients with metastatic renal cell carcinoma. Clin. Cancer Res. 14, 8270–8278 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Schmielau, J. & Finn, O. J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61, 4756–4760 (2001).

    CAS  PubMed  Google Scholar 

  22. Rodriguez, P. C. et al. Arginase I–producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69, 1553–1560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kusmartsev, S. & Gabrilovich, D. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J. Immunol. 174, 4880–4891 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Bronte, V. et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J. Exp. Med. 201, 1257–1268 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kusmartsev, S. et al. Oxidative stress up-regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J. Immunol. 181, 346–353 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Deerwish, I. H., Tannebaum, C. S., Rayman, P. A. & Finke, J. H. Mechanisms of immune dysfunction in renal cell carcinoma. Cancer Treat. Res. 116, 29–51 (2003).

    Article  Google Scholar 

  28. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zea, A. et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65, 3044–3048 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Serafini, P., Mgebroff, S., Noonan, K. & Borrello, I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68, 5439–5449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shevach, E. M., McHugh, R. S., Piccirillo, C. A. & Thornton, A. M. Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunol. Rev. 182, 58–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Curiel, T. J. Regulatory T cells and treatment of cancer. Curr. Opin. Immunol. 20, 241–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christensen, J. G. A preclinical review of sunitinib, a multitargeted receptor tyrosine kinase inhibitor with anti-angiogenic and antitumour activities. Ann. Oncol. 18 (Suppl. 10), x3–x10 (2007).

    Article  PubMed  Google Scholar 

  35. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Finke, J. H. et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin. Cancer Res. 14, 6674–6682 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ozao-Choy, J. et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 69, 2514–2522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xin, H. et al. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 69, 2506–2513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nefedova, Y. et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J. Immunol. 172, 464–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, D. & Dubois, R. N. Prostaglandins and cancer. Gut 55, 115–122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dannenberg, A. & Subbaramaiah, K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4, 431–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Tai, H. H., Cho, H., Tong, M. & Ding, Y. NAD+-linked 15-hydroxyprostaglandin dehydrogenase: structure and biological functions. Curr. Pharm. Des. 12, 955–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Eruslanov, E. et al. Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J. Immunol. 182, 7548–7557 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Fulton, A. M., Ma, X. & Kundu, N. Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res. 66, 9794–9797 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Harris, R. E., Beebe-Donk, J. & Alshafie, G. A. Similar reductions in the risk of human colon cancer by selective and nonselective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer 8, 237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cuzick, J. et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 10, 501–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Sharma, S. et al. Cyclooxygenase 2 inhibition promotes IFN-γ-dependent enhancement of antitumor responses. J. Immunol. 175, 813–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Sombroek, C. C. et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J. Immunol. 168, 4333–4343 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Stolina, M. et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J. Immunol. 164, 361–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, L. et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J. Clin. Invest. 111, 727–735 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Talmadge, J. et al. Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int. Immunopharmacol. 7, 140–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Sinha, P., Clements, V. K., Fulton, A. M. & Ostrand-Rosenberg, S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67, 4507–4513 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. DeLong, P. et al. Use of cyclooxygenase-2 inhibition to enhance the efficacy of immunotherapy. Cancer Res. 63, 7845–7852 (2003).

    CAS  PubMed  Google Scholar 

  54. Haas, A. R. et al. Cycloxygenase-2 inhibition augments the efficacy of a cancer vaccine. Clin. Cancer Res. 12, 214–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. De Santo, C. et al. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination Proc. Natl Acad. Sci. USA 102, 4185–4190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mirza, N. et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dowd, N. P., Scully, M., Adderley, S. R., Cunningham, A. J. & Fitzgerald, D. J. Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J. Clin. Invest. 108, 585–590 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levesque, L. E., Brophy, J. M. & Zhang, B. The risk for myocardial infarction with cyclooxygenase-2 inhibitors: a population study of elderly adults Ann. Intern. Med. 142, 481–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Rodriguez, P. C. & Ochoa, A. C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol. Rev. 222, 180–191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ochoa, A. C., Zea, A. H., Hernandez, C. & Rodriguez, P. C. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res. 13, 721s–726s (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez, P. C. et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma J. Exp. Med. 202, 931–939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Katz, J. B., Muller, A. & Prendergast, G. C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev. 222, 206–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Mellor, A. L. & Munn, D. H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today 20, 469–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Löb, S., Königsrainer, A., Rammensee, H. G., Opelz, G. & Terness, P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer 9, 445–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11, 312–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Löb, S. et al. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 111, 2152–2154 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2002).

    Article  CAS  Google Scholar 

  70. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ahn, G. O. & Brown, J. M. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13, 193–205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wong, D. & Korz, W. Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin. Cancer Res. 14, 7975–7980 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    CAS  PubMed  Google Scholar 

  79. Gabrilovich, D. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Larrivée, B., Pollet, I. & Karsan, A. Activation of vascular endothelial growth factor receptor-2 in bone marrow leads to accumulation of myeloid cells: role of granulocyte–macrophage colony-stimulating factor. J. Immunol. 175, 3015–3024 (2005).

    Article  PubMed  Google Scholar 

  81. Gerber, H. P., Condorelli, F., Park, J. & Ferrara, N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. 272, 23659–23667 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Sosman, J. & Puzanov, I. Combination targeted therapy in advanced renal cell carcinoma. Cancer 115, 2368–2375 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, J. C. Bevacizumab for patients with metastatic renal cancer: an update. Clin. Cancer Res. 10, 6367S–6370S (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Rini, B. I. et al. Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (Provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer 107, 67–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Vianello, F. et al. Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J. Immunol. 176, 2902–2914 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Kusmartsev, S. et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63, 4441–4449 (2003).

    CAS  PubMed  Google Scholar 

  87. Suzuki, E., Kappor, V., Jassar, A., Kaizer, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Hatzimouratidis, K. & Hatzichristou, D. G. Looking to the future for erectile dysfunction therapies. Drugs 68, 231–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Serafini, P. et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691–2702 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shevach, E. M. Certified professionals: CD4+CD25+ suppressor T cells. J. Exp. Med. 193, F41–F46 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Duvic, M. & Talpur, R. Optimizing denileukin diftitox (Ontak) therapy. Future Oncol. 4, 457–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. J. Immunol. 34, 336–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Norian, L. A. et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res. 69, 3086–3094 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Vieweg.

Ethics declarations

Competing interests

J. Vieweg declares that he has acted as a member of the Advisory Council for CureVac. S. Kusmartsev declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusmartsev, S., Vieweg, J. Enhancing the efficacy of cancer vaccines in urologic oncology: new directions. Nat Rev Urol 6, 540–549 (2009). https://doi.org/10.1038/nrurol.2009.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing