Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer

Abstract

It is generally held that the retinoblastoma (RB) tumor suppressor functions in multiple tissues to protect against tumor development. However, preclinical studies and analysis of tumor samples of early disease did not support an important role of RB loss in the origin of prostate cancer. By contrast, recent observations in the clinical setting and subsequent modeling of RB function indicate that the tumor suppressor has specialized roles in controlling androgen receptor expression in prostate cancer, and primarily functions to prevent progression to the castration-resistant stage of disease. Furthermore, preclinical models have now shown that loss of RB expression or functional activity decreases the effectiveness of hormone therapy, yet seems to increase sensitivity to a subset of chemotherapeutic agents. Here, the current state of knowledge regarding the implications of RB loss for prostate cancer progression will be reviewed, and potential opportunities for developing RB as a metric to predict therapeutic response will be considered.

Key Points

  • The retinoblastoma (RB) tumor suppressor is frequently lost or functionally inactivated in castration-resistant prostate cancer

  • RB protects against progression to castration resistance in part through modulation of androgen receptor expression and activity

  • Xenograft models of human prostate cancer suggest that RB downregulation contributes to the emergence of the castration-resistant phenotype

  • Although RB-deficient tumors may respond poorly to hormone therapy, evidence in multiple cancer types suggest that tumors low in RB exhibit a heightened initial response to chemotherapy

  • Tumor cells deficient in RB function show tissue-specific and context-specific loss of DNA damage checkpoints

  • RB status is a candidate for development as a pharmacodynamic marker of transition to castration resistance and as a predictive marker of response to therapy that might guide therapeutic decisions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RB controls prostate cancer progression.
Figure 2: A conceptual model for stratification based on RB status.

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  2. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  3. Huggins, C. Effect of orchiectomy and irradiation on cancer of the prostate. Ann. Surg. 115, 1192–1200 (1942).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24, 1967–2000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knudsen, K. E. & Penning, T. M. Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol. Metab. 21, 315–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knudsen, B. S. & Vasioukhin, V. Mechanisms of prostate cancer initiation and progression. Adv. Cancer Res. 109, 1–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Gurel, B. et al. Molecular alterations in prostate cancer as diagnostic, prognostic, and therapeutic targets. Adv. Anat. Pathol. 15, 319–331 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hansen, M. F. & Cavenee, W. K. Retinoblastoma and the progression of tumor genetics. Trends Genet. 4, 125–128 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Knudsen, E. S. & Knudsen, K. E. Tailoring to RB: tumour suppressor status and therapeutic response. Nat. Rev. Cancer 8, 714–724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8, 671–682 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bookstein, R. et al. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc. Natl Acad. Sci. USA 87, 7762–7766 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kubota, Y. et al. Retinoblastoma gene mutations in primary human prostate cancer. Prostate 27, 314–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Sarkar, F. H. et al. Analysis of retinoblastoma (RB) gene deletion in human prostatic carcinomas. Prostate 21, 145–152 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Wolff, J. M., Brett, L. T., Lessells, A. M. & Habib, F. K. Analysis of retinoblastoma gene expression in human prostate tissue. Urol. Oncol. 3, 177–182 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Phillips, S. M. et al. Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostatic tumorigenesis. Br. J. Cancer 70, 1252–1257 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brooks, J. D., Bova, G. S. & Isaacs, W. B. Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate 26, 35–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Ittmann, M. M. & Wieczorek, R. Alterations of the retinoblastoma gene in clinically localized, stage B prostate adenocarcinomas. Hum. Pathol. 27, 28–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Cooney, K. A. et al. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res. 56, 1142–1145 (1996).

    CAS  PubMed  Google Scholar 

  19. Li, C. et al. Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene 16, 481–487 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma, A. et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Invest. 120, 4478–4492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knudsen, E. S. & Wang, J. Y. Targeting the RB-pathway in cancer therapy. Clin. Cancer Res. 16, 1094–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bosco, E. E. et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J. Clin. Invest. 117, 218–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Markey, M. P. et al. Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res. 62, 6587–6597 (2002).

    CAS  PubMed  Google Scholar 

  25. Markey, M. P. et al. Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 26, 6307–6318 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Herschkowitz, J. I., He, X., Fan, C. & Perou, C. M. The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res. 10, R75 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sharma, A. et al. Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. Cancer Res. 67, 6192–6203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bookstein, R., Shew, J. Y., Chen, P. L., Scully, P. & Lee, W. H. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247, 712–715 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee, A. et al. Changes in growth and tumorigenicity following reconstitution of retinoblastoma gene function in various human cancer cell types by microcell transfer of chromosome 13. Cancer Res. 52, 6297–6304 (1992).

    CAS  PubMed  Google Scholar 

  30. Maddison, L. A., Sutherland, B. W., Barrios, R. J. & Greenberg, N. M. Conditional deletion of Rb causes early stage prostate cancer. Cancer Res. 64, 6018–6025 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y. et al. Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Res. 60, 6008–6017 (2000).

    CAS  PubMed  Google Scholar 

  32. Day, K. C. et al. Rescue of embryonic epithelium reveals that the homozygous deletion of the retinoblastoma gene confers growth factor independence and immortality but does not influence epithelial differentiation or tissue morphogenesis. J. Biol. Chem. 277, 44475–44484 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Hill, R., Song, Y., Cardiff, R. D. & Van Dyke, T. Heterogeneous tumor evolution initiated by loss of pRb function in a preclinical prostate cancer model. Cancer Res. 65, 10243–10254 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, Z. et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66, 7889–7898 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Shappell, S. B. et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64, 2270–2305 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Knudsen, K. E., Arden, K. C. & Cavenee, W. K. Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J. Biol. Chem. 273, 20213–20222 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Fribourg, A. F., Knudsen, K. E., Strobeck, M. W., Lindhorst, C. M. & Knudsen, E. S. Differential requirements for ras and the retinoblastoma tumor suppressor protein in the androgen dependence of prostatic adenocarcinoma cells. Cell Growth Differ. 11, 361–372 (2000).

    CAS  PubMed  Google Scholar 

  38. Libertini, S. J. et al. E2F1 expression in LNCaP prostate cancer cells deregulates androgen dependent growth, suppresses differentiation, and enhances apoptosis. Prostate 66, 70–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Sun, H. et al. E2f binding-deficient Rb1 protein suppresses prostate tumor progression in vivo. Proc. Natl Acad. Sci. USA 108, 704–709 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Macleod, K. F. The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer? J. Clin. Invest. 120, 4179–4182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Craft, N. et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 59, 5030–5036 (1999).

    CAS  PubMed  Google Scholar 

  43. Berges, R. R. et al. Cell proliferation, DNA repair, and p53 function are not required for programmed death of prostatic glandular cells induced by androgen ablation. Proc. Natl Acad. Sci. USA 90, 8910–8914 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, H. J. et al. Enhanced tumor suppressor gene therapy via replication-deficient adenovirus vectors expressing an N-terminal truncated retinoblastoma protein. Cancer Res. 56, 2245–2249 (1996).

    CAS  PubMed  Google Scholar 

  45. Zhang, X. et al. Adenoviral-mediated retinoblastoma 94 produces rapid telomere erosion, chromosomal crisis, and caspase-dependent apoptosis in bladder cancer and immortalized human urothelial cells but not in normal urothelial cells. Cancer Res. 63, 760–765 (2003).

    CAS  PubMed  Google Scholar 

  46. Pirollo, K. F. et al. Tumor-targeting nanocomplex delivery of novel tumor suppressor RB94 chemosensitizes bladder carcinoma cells in vitro and in vivo. Clin. Cancer Res. 14, 2190–2198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rizzolio, F., Tuccinardi, T., Caligiuri, I., Lucchetti, C. & Giordano, A. CDK inhibitors: from the bench to clinical trials. Curr. Drug Targets 11, 279–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Malumbres, M. & Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev. 17, 60–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Malumbres, M. Cyclins and related kinases in cancer cells. J. BUON 12 (Suppl. 1), S45–S52 (2007).

    PubMed  Google Scholar 

  50. Lapenna, S. & Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 8, 547–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. O'Dwyer, P. J. et al. A phase I dose escalation trial of a daily oral CDK 4/6 inhibitor PD-0332991. 2007 ASCO Annual Meeting Proceedings. J. Clin. Oncol. 25 (Suppl.), 3550 (2007).

    Google Scholar 

  52. Slamon, D. et al. Phase I study of PD 0332991, cyclin-D kinase (CDK) 4/6 inhibitor in combination with letrozole ofr first-line treatment of patients with ER-positive, HER2-negative breast cancer [abstract 3060]. J. Clin. Oncol. 28 (Suppl.), 15s (2010).

    Google Scholar 

  53. Ertel, A. et al. RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response. Cell Cycle 9, 4153–4163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Konecny, G. E. et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin. Cancer Res. 17, 1591–1602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koh, C. M. et al. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am. J. Pathol. 178, 1824–1834 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Soucek, L. & Evan, G. I. The ups and downs of Myc biology. Curr. Opin. Genet. Dev. 20, 91–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Hussain, M. et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J. Clin. Oncol. 24, 3984–3990 (2006).

    Article  PubMed  Google Scholar 

  58. Millikan, R. E. et al. Phase III trial of androgen ablation with or without three cycles of systemic chemotherapy for advanced prostate cancer. J. Clin. Oncol. 26, 5936–5942 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rahimi, H. et al. Rb, PTEN and p53 tumor suppressor loss is common in prostatic small cell carcinoma. Presented at the United States & Canadian Academy of Pathology Annual Meeting, San Antonio, TX (2011).

  60. Papandreou, C. N. et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J. Clin. Oncol. 20, 3072–3080 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Knudsen, K. E. et al. RB-dependent S-phase response to DNA damage. Mol. Cell. Biol. 20, 7751–7763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zagorski, W. A., Knudsen, E. S. & Reed, M. F. Retinoblastoma deficiency increases chemosensitivity in lung cancer. Cancer Res. 67, 8264–8273 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Trere, D. et al. High prevalence of retinoblastoma protein loss in triple-negative breast cancers and its association with a good prognosis in patients treated with adjuvant chemotherapy. Ann. Oncol. 20, 1818–1823 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Pollack, A. et al. Retinoblastoma protein expression and radiation response in muscle-invasive bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 39, 687–695 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Lassen, P. et al. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J. Clin. Oncol. 27, 1992–1998 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Lindel, K., Beer, K. T., Laissue, J., Greiner, R. H. & Aebersold, D. M. Human papillomavirus positive squamous cell carcinoma of the oropharynx: a radiosensitive subgroup of head and neck carcinoma. Cancer 92, 805–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chakravarti, A. et al. Prognostic value of p16 in locally advanced prostate cancer: a study based on Radiation Therapy Oncology Group Protocol 9202. J. Clin. Oncol. 25, 3082–3089 (2007).

    Article  PubMed  Google Scholar 

  69. Chakravarti, A. et al. Loss of p16 expression is of prognostic significance in locally advanced prostate cancer: an analysis from the Radiation Therapy Oncology Group protocol 86–10. J. Clin. Oncol. 21, 3328–3334 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Den, R. et al. Relationship between the loss of the retinoblastoma tumor suppressor and radiosensitivity [abstract 34]. J. Clin. Oncol. 29 (Suppl. 7), 34 (2011).

    Article  Google Scholar 

  71. Udayakumar, T., Shareef, M. M., Diaz, D. A., Ahmed, M. M. & Pollack, A. The E2F1/Rb and p53/MDM2 pathways in DNA repair and apoptosis: understanding the crosstalk to develop novel strategies for prostate cancer radiotherapy. Semin. Radiat. Oncol. 20, 258–266 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs Chris Logothetis, Angelo DeMarzo, Adam Dicker, Leonard Gomella, Kevin Kelly, and Erik Knudsen, the Greater Philadelphia Prostate Cancer Working Group, and Matthew Schiewer for critical discussion and comments. We would also like to thank Ms Beth Schade for technical and artwork assistance. We regret omission of additional citations due to space constraints. The authors are supported by grants from the NIH (CA099996 and CA116777 to K. E. Knudsen), US Department of Defense (to R. B. Den), and the Prostate Cancer Foundation (to K. E. Knudsen and R. B. Den).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data, discussing the content and writing the article and performing review/editing of the manuscript before submission.

Corresponding author

Correspondence to Karen E. Knudsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, A., Den, R. & Knudsen, K. Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer. Nat Rev Urol 8, 562–568 (2011). https://doi.org/10.1038/nrurol.2011.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.107

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer