Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of vesicoureteral reflux

Abstract

Primary vesicoureteral reflux (VUR) is the most common urological anomaly in children, affecting 1–2% of the pediatric population and 30–40% of children presenting with urinary tract infections (UTIs). Reflux-associated nephropathy is a major cause of childhood hypertension and chronic renal failure. The hereditary and familial nature of VUR is well recognized and several studies have reported that siblings of children with VUR have a higher incidence of reflux than the general pediatric population. Familial clustering of VUR implies that genetic factors have an important role in its pathogenesis, but no single major locus or gene for VUR has yet been identified and most researchers now acknowledge that VUR is genetically heterogeneous. Improvements in genome-scan techniques and continuously increasing knowledge of the genetic basis of VUR should help us to further understand its pathogenesis.

Key Points

  • Increasing amounts of evidence suggest that vesicoureteral reflux (VUR) is a genetically heterogenous disorder

  • Although VUR transgenic or knockout mouse models exist, the cognate genes in humans do not seem to be major contributors to primary VUR

  • Genome-wide linkage and association studies show little overlap of the major linkage peaks, although there is some intriguing evidence of overlaps in the minor peaks

  • Improvements in genome-scan techniques and increasing knowledge of the genetic basis of diseases should help us to search for VUR susceptibility genes

  • Improved knowledge of the genetic basis of VUR should help us to understand the reasons why some patients develop reflux nephropathy while others do not

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The GDNF/RET pathway in the control of urinary tract development.

Similar content being viewed by others

References

  1. Cooper, C. S. Diagnosis and management of vesicoureteral reflux in children. Nat. Rev. Urol. 6, 481–489 (2009).

    Article  PubMed  Google Scholar 

  2. Baker, R., Maxted, W., Maylath, J. & Shuman, I. Relation of age, sex, and infection to reflux: data indicating high spontaneous cure rate in pediatric patients. J. Urol. 95, 27–32 (1966).

    Article  CAS  PubMed  Google Scholar 

  3. Cooper, C. S., Chung, B. I., Kirsch, A. J., Canning, D. A. & Snyder, H. M. 3rd. The outcome of stopping prophylactic antibiotics in older children with vesicoureteral reflux. J. Urol. 163, 269–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Garin, E. H. et al. Clinical significance of primary vesicoureteral reflux and urinary antibiotic prophylaxis after acute pyelonephritis: a multicenter, randomized, controlled study. Pediatrics 117, 626–632 (2006).

    Article  PubMed  Google Scholar 

  5. Nagler, E. V. T., Williams, G., Hodson, E. M. & Craig, J. C. Interventions for primary vesicoureteric reflux. Cochrane Database of Systematic Reviews, Issue 6. Art. No.: CD001532. doi:10.1002/14651858.CD001532.pub4 (2011).

  6. Mohanan, N., Colhoun, E. & Puri, P. Renal parenchymal damage in intermediate and high grade infantile vesicoureteral reflux. J. Urol. 180, 1635–1638 (2008).

    Article  PubMed  Google Scholar 

  7. Nakai, H. et al. Clinical characteristics of primary vesicoureteral reflux in infants: multicenter retrospective study in Japan. J. Urol. 169, 309–312 (2003).

    Article  PubMed  Google Scholar 

  8. Farhat, W. et al. The natural history of neonatal vesicoureteral reflux associated with antenatal hydronephrosis. J. Urol. 164, 1057–1060 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Marra, G. et al. Congenital renal damage associated with primary vesicoureteral reflux detected prenatally in male infants. J. Pediatr. 124, 726–730 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Marra, G. et al. Severe vesicoureteral reflux and chronic renal failure: a condition peculiar to male gender? Data from the ItalKid Project. J. Pediatr. 144, 677–681 (2004).

    Article  PubMed  Google Scholar 

  11. Peters, C. & Rushton, H. G. Vesicoureteral reflux associated renal damage: congenital reflux nephropathy and acquired renal scarring. J. Urol. 184, 265–273 (2010).

    Article  PubMed  Google Scholar 

  12. Swerkersson, S., Jodal, U., Sixt, R., Stokland, E. & Hansson, S. Relationship among vesicoureteral reflux, urinary tract infection and renal damage in children. J. Urol. 178, 647–651 (2007).

    Article  PubMed  Google Scholar 

  13. Lashley, D. B., Barry, J. M., Demattos, A. M., Lande, M. B. & Mowry, J. A. Kidney transplantation in children: a single center experience. J. Urol. 161, 1920–1925 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Noe, H. N. The long-term results of prospective sibling reflux screening. J. Urol. 148, 1739–1742 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Parekh, D. J., Pope, J. C. T., Adams, M. C. & Brock, J. W. 3rd. Outcome of sibling vesicoureteral reflux. J. Urol. 167, 283–284 (2002).

    Article  PubMed  Google Scholar 

  16. Wan, J. et al. Sibling reflux: a dual center retrospective study. J. Urol. 156, 677–679 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Pirker, M. E., Colhoun, E. & Puri, P. Renal scarring in familial vesicoureteral reflux: is prevention possible? J. Urol. 176, 1842–1846 (2006).

    Article  PubMed  Google Scholar 

  18. Noe, H. N., Wyatt, R. J., Peeden, J. N. Jr & Rivas, M. L. The transmission of vesicoureteral reflux from parent to child. J. Urol. 148, 1869–1871 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Godley, M. L. et al. The relationship between early renal status, and the resolution of vesico-ureteric reflux and bladder function at 16 months. BJU Int. 87, 457–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Chapman, C. J., Bailey, R. R., Janus, E. D., Abbott, G. D. & Lynn, K. L. Vesicoureteric reflux: segregation analysis. Am. J. Med. Genet. 20, 577–584 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Eccles, M. R., Bailey, R. R., Abbott, G. D. & Sullivan, M. J. Unravelling the genetics of vesicoureteric reflux: a common familial disorder. Hum. Mol. Genet. 5 (Suppl. 1), 1425–1429 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Feather, S. A. et al. Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am. J. Hum. Genet. 66, 1420–1425 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanna-Cherchi, S. et al. Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds. J. Am. Soc. Nephrol. 16, 1781–1787 (2005).

    Article  PubMed  Google Scholar 

  24. van Eerde, A. M. et al. Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux. Pediatr. Nephrol. 22, 1129–1133 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pasch, A., Hoefele, J., Grimminger, H., Hacker, H. W. & Hildebrandt, F. Multiple urinary tract malformations with likely recessive inheritance in a large Somalian kindred. Nephrol. Dial. Transplant 19, 3172–3175 (2004).

    Article  PubMed  Google Scholar 

  26. Weng, P. L. et al. A recessive gene for primary vesicoureteral reflux maps to chromosome 12p11-q13. J. Am. Soc. Nephrol. 20, 1633–1640 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Middleton, G. W., Howards, S. S. & Gillenwater, J. Y. Sex-linked familial reflux. J. Urol. 114, 36–39 (1975).

    Article  CAS  PubMed  Google Scholar 

  28. Naseri, M., Ghiggeri, G. M., Caridi, G. & Abbaszadegan, M. R. Five cases of severe vesico-ureteric reflux in a family with an X-linked compatible trait. Pediatr. Nephrol. 25, 349–352 (2010).

    Article  PubMed  Google Scholar 

  29. de Vargas, A. et al. A family study of vesicoureteric reflux. J. Med. Genet. 15, 85–96 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Godley, M. L. Vesicoureteral reflux: pathophysiology and experimental studies. In Pediatric Urology (eds Gearhart, J. G., Rink, R. C. & Mouriquand, P. D.) (Saunders Elsevier, Amsterdam, 2001).

    Google Scholar 

  31. Ismaili, K., Avni, F. E., Wissing, K. M. & Hall, M. Long-term clinical outcome of infants with mild and moderate fetal pyelectasis: validation of neonatal ultrasound as a screening tool to detect significant nephrouropathies. J. Pediatr. 144, 759–765 (2004).

    PubMed  Google Scholar 

  32. Menezes, M. & Puri, P. Familial vesicoureteral reflux--is screening beneficial? J. Urol. 182, 1673–1677 (2009).

    Article  PubMed  Google Scholar 

  33. Yeung, C. K. et al. The characteristics of primary vesico-ureteric reflux in male and female infants with pre-natal hydronephrosis. Br. J. Urol. 80, 319–327 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Jang, H. C., Lee, K. H. & Park, J. S. Primary vesico-ureteral reflux: comparison of factors between infants and children. Korean J. Urol. 52, 206–209 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hunziker, M., Mohanan, N., Menezes, M. & Puri, P. Prevalence of duplex collecting systems in familial vesicoureteral reflux. Pediatr. Surg. Int. 26, 115–117 (2010).

    Article  PubMed  Google Scholar 

  36. Steele, B. T. & De Maria, J. A new perspective on the natural history of vesicoureteric reflux. Pediatrics 90, 30–32 (1992).

    CAS  PubMed  Google Scholar 

  37. Pirker, M. E. et al. Familial vesicoureteral reflux: influence of sex on prevalence and expression. J. Urol. 176, 1776–1780 (2006).

    Article  PubMed  Google Scholar 

  38. Kaefer, M. et al. Sibling vesicoureteral reflux in multiple gestation births. Pediatrics 105, 800–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Giannotti, G., Menezes, M., Hunziker, M. & Puri, P. Sibling vesicoureteral reflux in twins. Pediatr. Surg. Int. 27, 513–515 (2011).

    Article  PubMed  Google Scholar 

  40. Ichikawa, I., Kuwayama, F., Pope, J. C. T., Stephens, F. D. & Miyazaki, Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int. 61, 889–898 (2002).

    Article  PubMed  Google Scholar 

  41. Murawski, I. J. & Gupta, I. R. Vesicoureteric reflux and renal malformations: a developmental problem. Clin. Genet. 69, 105–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Murer, L., Benetti, E. & Artifoni, L. Embryology and genetics of primary vesico-ureteric reflux and associated renal dysplasia. Pediatr. Nephrol. 22, 788–797 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reidy, K. J. & Rosenblum, N. D. Cell and molecular biology of kidney development. Semin. Nephrol. 29, 321–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Batourina, E. et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat. Genet. 37, 1082–1089 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Batourina, E. et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat. Genet. 32, 109–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kelly, H. et al. A genome-wide scan for genes involved in primary vesicoureteric reflux. J. Med. Genet. 44, 710–717 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vermillion, C. D. & Heale, W. F. Position and configuration of the ureteral orifice and its relationship to renal scarring in adults. J. Urol. 109, 579–584 (1973).

    Article  CAS  PubMed  Google Scholar 

  49. Mackie, G. G. & Stephens, F. D. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J. Urol. 114, 274–280 (1975).

    Article  CAS  PubMed  Google Scholar 

  50. Murawski, I. J. & Gupta, I. R. Gene discovery and vesicoureteric reflux. Pediatr. Nephrol. 23, 1021–1027 (2008).

    Article  PubMed  Google Scholar 

  51. Murawski, I. J., Myburgh, D. B., Favor, J. & Gupta, I. R. Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/− mouse. Am. J. Physiol. Renal Physiol. 293, F1736–F1745 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Bouchard, M. Transcriptional control of kidney development. Differentiation 72, 295–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Majumdar, A., Vainio, S., Kispert, A., McMahon, J. & McMahon, A. P. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 175–185 (2003).

    Article  CAS  Google Scholar 

  55. Michos, O. et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signaling during kidney branching morphogenesis. Development 134, 2397–2405 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Kume, T., Deng, K. & Hogan, B. L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387–1395 (2000).

    CAS  PubMed  Google Scholar 

  58. Basson, M. A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Song, R., Spera, M., Garrett, C., El-Dahr, S. S. & Yosypiv, I. V. Angiotensin II AT2 receptor regulates ureteric bud morphogenesis. Am. J. Physiol. Renal Physiol. 298, F807–F817 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hu, P. et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J. Cell Biol. 151, 961–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun, T. T., Liang, F. X. & Wu, X. R. Uroplakins as markers of urothelial differentiation. Adv. Exp. Med. Biol. 462, 7–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, X. R. et al. Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. J. Biol. Chem. 269, 13716–13724 (1994).

    CAS  PubMed  Google Scholar 

  63. Kong, X. T. et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J. Cell Biol. 167, 1195–1204 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nishimura, H. et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol. Cell 3, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Oshima, K. et al. Angiotensin type II receptor expression and ureteral budding. J. Urol. 166, 1848–1852 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Yu, O. H., Murawski, I. J., Myburgh, D. B. & Gupta, I. R. Overexpression of RET leads to vesicoureteric reflux in mice. Am. J. Physiol. Renal Physiol. 287, F1123–F1130 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Porteous, S. et al. Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) ± mutant mice. Hum. Mol. Genet. 9, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Pedersen, A., Skjong, C. & Shawlot, W. Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol. 288, 571–581 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Bates, C. M. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr. Nephrol. doi:10.1007/s00467-010-1747-z.

    Article  PubMed  Google Scholar 

  70. Schimmenti, L. A. & Eccles, M. R. Renal coloboma syndrome in Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2007).

    Google Scholar 

  71. Dureau, P. et al. Renal coloboma syndrome. Ophthalmology 108, 1912–1916 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Bower, M., Eccles, M., Heidet, L. & Schimmenti, L. A. Clinical utility gene card for: renal coloboma (Papillorenal) syndrome. Eur. J. Hum. Genet. doi:10.1038/ejhg.2011.16.

    Article  Google Scholar 

  73. Smith, R. J. H. Branchiootorenal syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 1999).

    Google Scholar 

  74. Chang, E. H. et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum. Mutat. 23, 582–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Hoskins, B. E. et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am. J. Hum. Genet. 80, 800–804 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barakat, A. Y., D'Albora, J. B., Martin, M. M. & Jose, P. A. Familial nephrosis, nerve deafness, and hypoparathyroidism. J. Pediatr. 91, 61–64 (1977).

    Article  CAS  PubMed  Google Scholar 

  77. Bilous, R. W. et al. Brief report: autosomal dominant familial hypoparathyroidism, sensorineural deafness, and renal dysplasia. N. Engl. J. Med. 327, 1069–1074 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Lichtner, P. et al. An HDR (hypoparathyroidism, deafness, renal dysplasia) syndrome locus maps distal to the DiGeorge syndrome region on 10p13/14. J. Med. Genet. 37, 33–37 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Van Esch, H. et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406, 419–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Zahirieh, A. et al. Functional analysis of a novel GATA3 mutation in a family with the hypoparathyroidism, deafness, and renal dysplasia syndrome. J. Clin. Endocrinol. Metab. 90, 2445–2450 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Fukami, M. et al. GATA3 abnormalities in six patients with HDR syndrome. Endocr. J. 58, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Pallais, J. C., Au, M., Pitteloud, N., Seminara, S. & Crowley, W. F. Kallmann Syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2007).

    Google Scholar 

  83. Duke, V., Quinton, R., Gordon, I., Bouloux, P. M. & Woolf, A. S. Proteinuria, hypertension and chronic renal failure in X-linked Kallmann's syndrome, a defined genetic cause of solitary functioning kidney. Nephrol. Dial. Transplant. 13, 1998–2003 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Innis, J. W. Hand-foot-genital syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (Seattle, WA, 2006).

    Google Scholar 

  85. Mortlock, D. P. & Innis, J. W. Mutation of HOXA13 in hand-foot-genital syndrome. Nat. Genet. 15, 179–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Kohlhase, J. Townes-Brocks syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2007).

    Google Scholar 

  87. Aydogdu, O. et al. Ochoa syndrome: a spectrum of urofacial syndrome. Eur. J. Pediatr. 169, 431–435 (2010).

    Article  PubMed  Google Scholar 

  88. Daly, S. B. et al. Mutations in HPSE2 cause urofacial syndrome. Am. J. Hum. Genet. 86, 963–969 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pang, J. et al. Loss-of-function mutations in HPSE2 cause the autosomal recessive urofacial syndrome. Am. J. Hum. Genet. 86, 957–962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deardorff, M. A., Clark, D. M. & Krantz, I. D. Cornelia de Lange syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2005).

    Google Scholar 

  91. Jackson, L., Kline, A. D., Barr, M. A. & Koch, S. de Lange syndrome: a clinical review of 310 individuals. Am. J. Med. Genet. 47, 940–946 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Robin, N. H., Falk, M. J. & Haldeman-Englert, C. R. FGFR-related craniosystosis syndromes. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 1998).

    Google Scholar 

  93. Hains, D. S. et al. High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J. Urol. 183, 2077–2084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Seyedzadeh, A., Kompani, F., Esmailie, E., Samadzadeh, S. & Farshchi, B. High-grade vesicoureteral reflux in Pfeiffer syndrome. Urol. J. 5, 200–202 (2008).

    PubMed  Google Scholar 

  95. Savoia, A. & Balduini, C. L. MYH9-related disorders. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2008).

    Google Scholar 

  96. Kolon, T. F., Gray, C. L., Sutherland, R. W., Roth, D. R. & Gonzales, E. T. Jr. Upper urinary tract manifestations of the VACTERL association. J. Urol. 163, 1949–1951 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Felix, J. F., Tibboel, D. & de Klein, A. Chromosomal anomalies in the etiology of oesophageal atresia and tracheo-oesophageal fistula. Eur. J. Med. Genet. 50, 163–175 (2007).

    Article  PubMed  Google Scholar 

  98. Scott, D. A. Esophageal atresia/tracheoesophageal fistula overview. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2009).

    Google Scholar 

  99. Stankiewicz, P. et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet. 84, 780–791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ashraf, S. et al. Mapping of a new locus for congenital anomalies of the kidney and urinary tract on chromosome 8q24. Nephrol. Dial. Transplant. 25, 1496–1501 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Pini Prato, A. et al. Hirschsprung disease and congenital anomalies of the kidney and urinary tract (CAKUT): a novel syndromic association. Medicine (Baltimore) 88, 83–90 (2009).

    Article  CAS  Google Scholar 

  103. Sampson, M. G. et al. Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am. J. Med. Genet. A 152A, 2618–2622 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Yang, Y., Houle, A. M., Letendre, J. & Richter, A. RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum. Mutat. 29, 695–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Cordell, H. J. et al. Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J. Am. Soc. Nephrol. 21, 113–123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Darlow, J. M., Molloy, N. H., Green, A. J., Puri, P. & Barton, D. E. The increased incidence of the RET p.Gly691Ser variant in French-Canadian vesicoureteric reflux patients is not replicated by a larger study in Ireland. Hum. Mutat. 30, E612–617 (2009).

    Article  PubMed  Google Scholar 

  107. Bertoli-Avella, A. M. et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J. Am. Soc. Nephrol. 19, 825–831 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lu, W. et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am. J. Hum. Genet. 80, 616–632 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zu, S., Bartik, Z., Zhao, S., Sillen, U. & Nordenskjold, A. Mutations in the ROBO2 and SLIT2 genes are rare causes of familial vesico-ureteral reflux. Pediatr. Nephrol. 24, 1501–1508 (2009).

    Article  PubMed  Google Scholar 

  110. Choi, K. L., McNoe, L. A., French, M. C., Guilford, P. J. & Eccles, M. R. Absence of PAX2 gene mutations in patients with primary familial vesicoureteric reflux. J. Med. Genet. 35, 338–339 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gimelli, S. et al. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum. Mutat. 31, 1352–1359 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lee-Chen, G. J. et al. Significance of the tissue kallikrein promoter and transforming growth factor-beta1 polymorphisms with renal progression in children with vesicoureteral reflux. Kidney Int. 65, 1467–1472 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Kowalewska-Pietrzak, M., Klich, I. & Mlynarski, W. TGF-beta1 gene polymorphisms and primary vesicoureteral reflux in childhood. Pediatr. Nephrol. 23, 2195–2200 (2008).

    Article  PubMed  Google Scholar 

  114. Kuroda, S., Solari, V. & Puri, P. Association of transforming growth factor-beta1 gene polymorphism with familial vesicoureteral reflux. J. Urol. 178, 1650–1653 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Hohenfellner, K. et al. ACE I/D gene polymorphism predicts renal damage in congenital uropathies. Pediatr. Nephrol. 13, 514–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Ohtomo, Y. et al. Angiotensin converting enzyme gene polymorphism in primary vesicoureteral reflux. Pediatr. Nephrol. 16, 648–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Rigoli, L. et al. Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr. Res. 56, 988–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Park, H. W. et al. Association of angiotensin I converting enzyme gene polymorphism with reflux nephropathy in children. Nephron 86, 52–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Yoneda, A., Oue, T. & Puri, P. Angiotensin-converting enzyme genotype distribution in familial vesicoureteral reflux. Pediatr. Surg. Int. 17, 308–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Yoneda, A., Cascio, S., Green, A., Barton, D. & Puri, P. Angiotensin II type 2 receptor gene is not responsible for familial vesicoureteral reflux. J. Urol. 168, 1138–1141 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Jenkins, D. et al. De novo uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J. Am. Soc. Nephrol. 16, 2141–2149 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Schonfelder, E. M. et al. Mutations in uroplakin IIIA are a rare cause of renal hypodysplasia in humans. Am. J. Kidney Dis. 47, 1004–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Giltay, J. C., van de Meerakker, J., van Amstel, H. K. & de Jong, T. P. No pathogenic mutations in the uroplakin III gene of 25 patients with primary vesicoureteral reflux. J. Urol. 171, 931–932 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Jiang, S. et al. Lack of major involvement of human uroplakin genes in vesicoureteral reflux: implications for disease heterogeneity. Kidney Int. 66, 10–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Kelly, H., Barton, D., Molony, C. & Puri, P. Linkage analysis of candidate genes in families with vesicoureteral reflux. J. Urol. 182, 1669–1672 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Kelly, H. et al. Uroplakin III is not a major candidate gene for primary vesicoureteral reflux. Eur. J. Hum. Genet. 13, 500–502 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Briggs, C. E. et al. A genome scan in affected sib-pairs with familial vesicoureteral reflux identifies a locus on chromosome 5. Eur. J. Hum. Genet. 18, 245–250 (2010).

    Article  PubMed  Google Scholar 

  128. Casas, K. A. et al. Chromosome 2q terminal deletion: report of 6 new patients and review of phenotype-breakpoint correlations in 66 individuals. Am. J. Med. Genet. A 130A, 331–339 (2004).

    Article  PubMed  Google Scholar 

  129. Conte, M. L. et al. A genome search for primary vesicoureteral reflux shows further evidence for genetic heterogeneity. Pediatr. Nephrol. 23, 587–595 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Freedman, B. I. et al. A genome scan for all-cause end-stage renal disease in African Americans. Nephrol. Dial. Transplant. 20, 712–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Ogata, T. et al. Genetic evidence for a novel gene(s) involved in urogenital development on 10q26. Kidney Int. 58, 2281–2290 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Vats, K. R. et al. A locus for renal malformations including vesico-ureteric reflux on chromosome 13q33–34. J. Am. Soc. Nephrol. 17, 1158–1167 (2006).

    Article  PubMed  Google Scholar 

  133. Yoshida, T. et al. Association of gene polymorphisms with chronic kidney disease in Japanese individuals. Int. J. Mol. Med. 24, 539–547 (2009).

    CAS  PubMed  Google Scholar 

  134. Stahl, D. A., Koul, H. K., Chacko, J. K. & Mingin, G. C. Congenital anomalies of the kidney and urinary tract (CAKUT): a current review of cell signaling processes in ureteral development. J. Pediatr. Urol. 2, 2–9 (2006).

    Article  PubMed  Google Scholar 

  135. Nothnagel, M., Ellinghaus, D., Schreiber, S., Krawczak, M. & Franke, A. A comprehensive evaluation of SNP genotype imputation. Hum. Genet. 125, 163–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Perry, J. R. et al. Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes 58, 1463–1467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. & Mesirov, J. P. GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics 23, 3251–3253 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet. 81, 1278–1283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Miyazaki, Y., Oshima, K., Fogo, A., Hogan, B. L. & Ichikawa, I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest. 105, 863–873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Miyazaki, Y., Oshima, K., Fogo, A. & Ichikawa, I. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int. 63, 835–844 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Xu, P. X. et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat. Genet. 23, 113–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Schuchardt, A., D'Agati, V., Pachnis, V. & Costantini, F. Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122, 1919–1929 (1996).

    CAS  PubMed  Google Scholar 

  145. Yerkes, E. et al. Role of angiotensin in the congenital anomalies of the kidney and urinary tract in the mouse and the human. Kidney Int. Suppl. 67, S75–S77 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Yu, J., Carroll, T. J. & McMahon, A. P. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129, 5301–5312 (2002).

    CAS  PubMed  Google Scholar 

  147. Chang, C. P. et al. Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J. Clin. Invest. 113, 1051–1058 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. Puri and J.-H. Gosemann researched data for the article and reviewed and edited the article before submission. P. Puri, J.-H. Gosemann and D. E. Barton wrote the article. All authors contributed significantly to discussions of content.

Corresponding author

Correspondence to Prem Puri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, P., Gosemann, JH., Darlow, J. et al. Genetics of vesicoureteral reflux. Nat Rev Urol 8, 539–552 (2011). https://doi.org/10.1038/nrurol.2011.113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing