Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Hijacking the vasculature in ccRCC—co-option, remodelling and angiogenesis

Abstract

The most common type of malignancy in the adult kidney is clear cell renal cell carcinoma (ccRCC), for which antiangiogenic therapy with surgery is currently the standard treatment. Although overall survival of patients with metastatic ccRCC has been substantially extended by antiangiogenic therapy with agents such as sorafenib and sunitinib, patients almost certainly go on to develop resistance, or present at the time of treatment with primary resistance. This eventuality implies that our knowledge of the processes involved in tumour angiogenesis in ccRCC is superficial. Increasing evidence has shown that a solid tumour can, during invasion and expansion, 'hijack' pre-existing blood vessels and integrate them into the tumour vasculature. This approach to expanding the tumour vasculature is referred to as vessel co-option. In this Perspectives article, I argue that vessel co-option likely occurs in ccRCC, along with the complementary processes of vessel remodelling and extratumoural angiogenesis. Exploring the underlying molecular mechanisms of these complicated vasculature developments in ccRCC might provide new opportunities to enhance the efficacy of antiangiogenic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Speculative vessel co-option of differentiated mature vessels in ccRCC.
Figure 2: High vessel density on the surface of ccRCC.

Similar content being viewed by others

References

  1. Holleb, A. I. & Folkman J. Tumor angiogenesis. CA Cancer J. Clin. 22, 226–229 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Qin, L., Bromberg-White, J. L. & Qian, C. N. Opportunities and challenges in tumor angiogenesis research: back and forth between bench and bed. Adv. Cancer Res. 113, 191–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Giridharan, W., Hughes, J., Fenton, J. E. & Jones, A. S. Lymph node metastases in the lower neck. Clin. Otolaryngol. Allied Sci. 28, 221–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Qian, C. N., Resau, J. H. & Teh, B. T. Prospects for vasculature reorganization in sentinel lymph nodes. Cell Cycle 6, 514–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    PubMed  Google Scholar 

  6. Sunela, K. L. et al. Prognostic factors and long-term survival in renal cell cancer patients. Scand. J. Urol. Nephrol. 43, 454–460 (2009).

    Article  PubMed  Google Scholar 

  7. Zhang, Z. L. et al. Stage T1N0M0 renal cell carcinoma: the prognosis in Asian patients. Chin. J. Cancer 30, 772–778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Z. L. et al. Oncological outcome of surgical treatment in 336 patients with renal cell carcinoma. Chin. J. Cancer 29, 995–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Herrmann, E. et al. Sequential therapies with sorafenib and sunitinib in advanced or metastatic renal cell carcinoma. World J. Urol. 29, 361–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Motzer, R. J. et al. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol. 17, 2530–2540 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Powles, T. Second-line therapy after VEGF targeted therapy in metastatic renal cancer: a law of diminishing returns. Clin. Genitourin. Cancer 10, 67–68 (2012).

    Article  PubMed  Google Scholar 

  12. Qian, C. N., Huang, D., Wondergem, B. & Teh, B. T. Complexity of tumor vasculature in clear cell renal cell carcinoma. Cancer 115 (Suppl. 10), 2282–2289 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, D. et al. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res. 70, 1053–1062 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, F. H. et al. Vasculatures in tumors growing from preirradiated tissues: formed by vasculogenesis and resistant to radiation and antiangiogenic therapy. Int. J. Radiat. Oncol. Biol. Phys. 80, 1512–1521 (2012).

    Article  Google Scholar 

  15. Weisshardt, P. et al. Tumor vessel stabilization and remodeling by anti-angiogenic therapy with bevacizumab. Histochem. Cell Biol. 137, 391–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Leenders, W. P., Küsters, B. & de Waal, R. M. Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9, 83–87 (2002).

    Article  PubMed  Google Scholar 

  17. Yao, X. et al. Two distinct types of blood vessels in clear cell renal cell carcinoma have contrasting prognostic implications. Clin. Cancer Res. 13, 161–169 (2007).

    Article  PubMed  Google Scholar 

  18. Goel, S. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Foo, S. S. et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, A. et al. Inhibition of cyclooxygenase-2 disrupts tumor vascular mural cell recruitment and survival signaling. Cancer Res. 66, 4378–4384 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Stratman, A. N., Schwindt, A. E., Malotte, K. M. & Davis, G. E. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116, 4720–4730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Döme, B., Paku, S., Somlai, B. & Tímár, J. Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J. Pathol. 197, 355–362 (2002).

    Article  PubMed  Google Scholar 

  23. Cao, Y. et al. Pericyte coverage of differentiated vessels inside tumor vasculature is an independent unfavorable prognostic factor for patients with clear cell renal cell carcinoma. Cancer 119, 313–324 (2012).

    Article  PubMed  Google Scholar 

  24. O'Keeffe, M. B. et al. Investigation of pericytes, hypoxia, and vascularity in bladder tumors: association with clinical outcomes. Oncol. Res. 17, 93–101 (2008).

    Article  PubMed  Google Scholar 

  25. Fergelot, P. et al. The experimental renal cell carcinoma model in the chick embryo. Angiogenesis 16, 181–194 (2012).

    Article  PubMed  Google Scholar 

  26. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. von Baumgarten, L. et al. Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin. Cancer Res. 17, 6192–6205 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Qian, C. N. et al. Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 66, 10365–10376 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Eberhard, A. et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60, 1388–1393 (2000).

    CAS  PubMed  Google Scholar 

  32. Ding, Y., Song, N. & Luo, Y. Role of bone marrow-derived cells in angiogenesis: focus on macrophages and pericytes. Cancer Microenviron. 5, 225–236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garrett, H. E., Diethrich, E. B. & DeBakey, M. E. Myocardial revascularization. Surg. Clin. North Am. 46, 863–871 (1966).

    Article  CAS  PubMed  Google Scholar 

  34. Kwei, S. et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am. J. Pathol. 164, 81–89 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hillmeister, P. et al. Arteriogenesis is modulated by bradykinin receptor signaling. Circ. Res. 109, 524–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Farnsworth, R. H. et al. A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res. 71, 6547–6557 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Doyle, M. E., Perley, J. P. & Skalak, T. C. Bone marrow-derived progenitor cells augment venous remodeling in a mouse dorsal skinfold chamber model. PLoS ONE 7, e32815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miles, K. A. et al. In vivo assessment of neovascularization of liver metastases using perfusion CT. Br. J. Radiol. 71, 276–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Halin, S., Rudolfsson, S. H., Van Rooijen, N. & Bergh, A. Extratumoral macrophages promote tumor and vascular growth in an orthotopic rat prostate tumor model. Neoplasia 11, 177–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is supported by grants from the National Natural Science Foundation of China (Grant No. 81030043 and 81272340), and the Van Andel Foundation. The author thanks Paul Elson, Quantitative Health Science (The Cleveland Clinic, OH) for statistical analyses and David Nadziejka (Grand Rapids, MI) for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, CN. Hijacking the vasculature in ccRCC—co-option, remodelling and angiogenesis. Nat Rev Urol 10, 300–304 (2013). https://doi.org/10.1038/nrurol.2013.26

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.26

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer