Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thromboprophylaxis and bleeding diathesis in minimally invasive stone surgery

Subjects

Key Points

  • Urologists frequently encounter patients with multiple and complex comorbidities who are on regular antiplatelet or anticoagulation medication or who have a chronic bleeding disorder

  • Decisions regarding perioperative and postoperative thromboprophylaxis in patients undergoing urological surgery, particularly stone surgery, are frequently met with confusion

  • Systematic thromboprophylaxis with low molecular weight heparin as a subcutaneous injection once daily, until complete mobilization, is recommended in high-risk patients and when lithotripsy is not day case surgery

  • Patients undergoing stone surgery should be stratified into groups according to the risk of bleeding and the risk of thromboembolic events for the respective intervention (high, intermediate and low risk)

  • Bridging therapy should be directed by the inherent risk of bleeding in individual patients, according to American College of Chest Physicians guidelines, as should perioperative treatment with antiplatelet agents

  • A decision algorithm for each lithotripsy modality according to antithrombotic medication used should help the operating surgeon achieve the fine balance required between patient safety and treatment effectiveness

Abstract

With populations ageing and active treatment of urinary stones increasingly in demand, more patients with stones are presenting with an underlying bleeding disorder or need for regular thromboprophylaxis, by means of antiplatelet and other medication. A practical guide to thromboprophylaxis in the treatment of urinary tract lithiasis has not yet been established. Patients can be stratified according to levels of risk of arterial and venous thromboembolism, which influence the requirements for antiplatelet and anticoagulant medications, respectively. Patients should also be stratified according to their risk of bleeding. Consideration of the combined risks of bleeding and thromboembolism should determine the perioperative thromboprophylactic strategy. The choice of shockwave lithotripsy, percutaneous nephrolithotomy or ureteroscopy with laser lithotripsy for treatment of lithiasis should be determined with regard to these risks. Although ureteroscopy is the preferred method in high-risk patients, shockwave lithotripsy and percutaneous nephrolithotomy can be chosen when indicated, if appropriate guidelines are strictly followed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haemostasis involves two principle components, platelets and fibrin, acting in concert to generate a wound-sealing clot.

Similar content being viewed by others

References

  1. Trinchieri, A. Epidemiology of urolithiasis: an update. Clin. Cases Miner. Bone Metab. 5, 101–106 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. Bartoletti, R. et al. Epidemiology and risk factors in urolithiasis. Urol. Int. 79 (Suppl. 1), 3–7 (2007).

    Article  PubMed  Google Scholar 

  3. Douketis, J. D. et al. Perioperative management of antithrombotic therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141 (Suppl.), e326S–e3250S (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Douketis, J. D. Perioperative anticoagulation management in patients who are receiving oral anticoagulant therapy: a practical guide for clinicians. Thromb. Res. 1081, 3–13 (2002).

    Article  Google Scholar 

  5. Larson, B. J., Zumberg, M. S. & Kitchens, C. S. A feasibility study of continuing dose-reduced warfarin for invasive procedures in patients with high thromboembolic risk. Chest 127, 922–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Siegal, D. et al. Periprocedural heparin bridging in patients receiving vitamin K antagonists: systematic review and meta-analysis of bleeding and thromboembolic rates. Circulation 126, 1630–1639 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt, R. F. & Thews, G. in Human Physiology 2nd edn Ch. 18 (ed. Schmidt, R. F.) 418–425 (Springer, 1989).

    Book  Google Scholar 

  8. Nielsen, J. D., Gram, J., Holm-Nielsen, A., Fabrin, K. & Jespersen, J. Post-operative blood loss after transurethral prostatectomy is dependent on in situ fibrinolysis. Br. J. Urol. 80, 889–893 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Watson, C. J., Deane, A. M., Doyle, P. T. & Bullock, K. N. Identifiable factors in post-prostatectomy haemorrhage: the role of aspirin. Br. J. Urol. 66, 85–87 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Ihezue, C. U., Smart, J., Dewbury, K. C., Mehta, R. & Burgess, L. Biopsy of the prostate guided by transrectal ultrasound: relation between warfarin use and incidence of bleeding complications. Clin. Radiol. 60, 459–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Daniels, P. R. Therapy Insight: management of urology patients taking long-term warfarin anticoagulation therapy. Nat. Clin. Pract. Urol. 2, 343–350 (2005).

    Article  PubMed  Google Scholar 

  12. Turk, C. et al. Guidelines on urolithiasis. Uroweb [online], (2013).

    Google Scholar 

  13. Kovacs, M. J. et al. Single-arm study of bridging therapy with low-molecular-weight heparin for patients at risk of arterial embolism who require temporary interruption of warfarin. Circulation 110, 1658–1663 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Jaffer, A. K. et al. Low-molecular-weight-heparins as periprocedural anticoagulation for patients on long-term warfarin therapy: a standardized bridging therapy protocol. J. Thromb. Thrombolysis 20, 11–16 (2005).

    Article  PubMed  Google Scholar 

  15. Gage, B. F. et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 285, 2864–2870 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Nicolaides, A. N. et al. Prevention and treatment of venous thromboembolism. International consensus statement (guidelines according to scientific evidence). Int. Angiol. 25, 101–161 (2006).

    Google Scholar 

  17. Srisubat, A., Potisat, S., Lojanapiwat, B., Setthawong, V. & Laopaiboon, M. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD007044. http://dx.doi.org/10.1002/14651858.CD007044.pub2.

  18. Aboumarzouk, O. M., Somani, B. K. & Monga, M. Flexible ureteroscopy and holmium:YAG laser lithotripsy for stone disease in patients with bleeding diathesis: a systematic review of the literature. Int. Braz. J. Urol. 38, 298–305 (2012).

    Article  PubMed  Google Scholar 

  19. CMG49: Support for commissioning: anticoagulation therapy. National Institute for Health and Care Excellence (NICE) [online], (2013).

  20. Schnyder-Joris, C., Bonhomme, F., Bonvini, R. & Fontana, P. Perioperative management of new antiplatelet drugs. Rev. Med. Suisse 9, 326–330 (2013).

    CAS  PubMed  Google Scholar 

  21. Gupta, A. D., Streiff, M., Resar, J. & Schoenberg, M. Coronary stent management in elective genitourinary surgery. BJU Int. 110, 480–484 (2012).

    Article  PubMed  Google Scholar 

  22. Davis, N. F., Fanning, D. M., McGuire, B. B., Carroll, G. T. & Flood, H. D. Perioperative management of chronic anticoagulation therapy in urological patients: a cross-sectional survey of practice. Ir. J. Med. Sci. 180, 823–828 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Fischer, C., Wöhrle, J., Pastor, J., Morgenroth, K. & Senge, T. Extracorporeal shock-wave lithotripsy induced ultrastructural changes to the renal parenchyma under aspirin use. Electron microscopic findings in the rat kidney. Urologe A 46, 150–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Becopoulos, T., Karayannis, A., Mandalaki, T., Karafoulidou, A. & Markakis, C. Extracorporeal lithotripsy in patients with hemophilia. Eur. Urol. 14, 343–345 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz Marcellán, F. J. et al. Extracorporeal shockwave lithotripsy in patients with coagulation disorders. Arch. Esp. Urol. 45, 135–137 (1992).

    PubMed  Google Scholar 

  26. Ishikawa, J., Okamoto, M., Higashi, Y. & Harada, M. Extracorporeal shock wave lithotripsy in von Willebrand's disease. Int. J. Urol. 3, 58–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Dhar, N. B., Thornton, J., Karafa, M. T. & Streem, S. B. A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J. Urol. 172, 2271–2274 (2004).

    Article  PubMed  Google Scholar 

  28. Alivizatos, G. & Skolarikos, A. Is there still a role for open surgery in the management of renal stones? Curr. Opin. Urol. 16, 106–111 (2006).

    Article  PubMed  Google Scholar 

  29. Skolarikos, A., Alivizatos, G. & de la Rosette, J. Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. Eur. Urol. 50, 981–990 (2006).

    Article  PubMed  Google Scholar 

  30. Momose, A., Funyu, T., Takahashi, N. & Suzuki, T. Effect of pressure distribution of shockwave on renal hemorrhage after extracorporeal shockwave lithotripsy: comparison of EDAP LT-01 and Siemens Lithostar. J. Endourol. 13, 165–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Graber, S. F., Danuser, H., Hochreiter, W. W. & Studer, U. E. A prospective randomized trial comparing 2 lithotriptors for stone disintegration and induced renal trauma. J. Urol. 169, 54–57 (2003).

    Article  PubMed  Google Scholar 

  32. Evan, A. P., McAteer, J. A., Connors, B. A., Blomgren, P. M. & Lingeman, J. E. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. BJU Int. 100, 624–627 (2007).

    Article  PubMed  Google Scholar 

  33. Klingler, H. C. et al. Stone treatment and coagulopathy. Eur. Urol. 43, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Zanetti, G. et al. Extracorporeal shockwave lithotripsy in patients treated with antithrombotic agents. J. Endourol. 15, 237–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Sare, G. M., Lloyd, F. R. & Stower, M. J. Life-threatening haemorrhage after extracorporeal shockwave lithotripsy in a patient taking clopidogrel. BJU Int. 90, 469 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Katz, R., Admon, D. & Pode, D. Life-threatening retroperitoneal hematoma caused by anticoagulant therapy for myocardial infarction after SWL. J. Endourol. 11, 23–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Kukreja, R., Desai, M., Patel, S., Bapat, S. & Desai, M. Factors affecting blood loss during percutaneous nephrolithotomy: prospective study. J. Endourol. 18, 715–722 (2004).

    Article  PubMed  Google Scholar 

  38. Preminger, G. M. et al. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J. Urol. 173, 1991–2000 (2005).

    Article  PubMed  Google Scholar 

  39. Kefer, J. C., Turna, B., Stein, R. J. & Desai, M. M. Safety and efficacy of percutaneous nephrostolithotomy in patients on anticoagulant therapy. J. Urol. 181, 144–148 (2009).

    Article  PubMed  Google Scholar 

  40. Nerli, R. B., Reddy, M. N., Devaraju, S. & Hiremath, M. B. Percutaneous nephrolithotomy in patients on chronic anticoagulant/antiplatelet therapy. Chonnam Med. J. 48, 103–107 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gross, A. J. & Bach, T. Preoperative percutaneous stone surgery in patients receiving anticoagulant therapy. J. Endourol. 23, 1563–1565 (2009).

    Article  PubMed  Google Scholar 

  42. Van Cangh, P. et al. Management of difficult kidney stones. J. Endourol. 21, 478–489 (2007).

    Article  PubMed  Google Scholar 

  43. Eberli, D. et al. Urological surgery and antiplatelet drugs after cardiac and cerebrovascular accidents. J. Urol. 183, 2128–2136 (2010).

    Article  PubMed  Google Scholar 

  44. Kuo, R. L., Aslan, P., Fitzgerald, K. B. & Preminger, G. M. Use of ureteroscopy and holmium:YAG laser in patients with bleeding diatheses. Urology 52, 609–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Watterson, J. D. et al. Safety and efficacy of holmium: YAG laser lithotripsy in patients with bleeding diatheses. J. Urol. 168, 442–445 (2002).

    Article  PubMed  Google Scholar 

  46. Turna, B. et al. Safety and efficacy of flexible ureterorenoscopy and holmium:YAG lithotripsy for intrarenal stones in anticoagulated cases. J. Urol. 179, 1415–1419 (2008).

    Article  PubMed  Google Scholar 

  47. Joint Formulary Committee. British National Formulary 65 140–162 (Pharmaceutical Press, 2013).

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Bourdoumis, T. Stasinou and S. Kachrilas researched the data for the article. A. Bourdoumis and T. Stasinou provided a substantial contribution to discussions of the content. A. Bourdoumis wrote the article. A. Bourdoumis, S. Kachrilas, A. G. Papatsoris, N. Buchholz and J. Masood contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Andreas Bourdoumis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourdoumis, A., Stasinou, T., Kachrilas, S. et al. Thromboprophylaxis and bleeding diathesis in minimally invasive stone surgery. Nat Rev Urol 11, 51–58 (2014). https://doi.org/10.1038/nrurol.2013.278

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing