Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy

Key Points

  • Mutations in the DNA repair pathway genes ERCC2, FANCC, ATM, and RB1 correlate with complete pathological response to neoadjuvant chemotherapy and should be further evaluated for their utility in clinical decision making

  • Gene mutations, copy number variations, and rearrangements in receptor tyrosine kinase (RTK)– MAPK and PI3K–MTOR pathways are found in 70% of bladder tumours; recent studies show that these alterations, in addition to having prognostic significance, can be predictive of response

  • Several ongoing, large pan-cancer trials match patients to a targeted agent (or agents) on the basis of molecular and genetic tumour features, testing for increased efficacy of this personalized medicine approach

  • Immune checkpoint inhibitors that target programmed cell death protein 1 (PD1) and its ligand PDL1 show promise in clinical trials and are approved for bladder cancer treatment; further research is required to personalize the use of these agents

  • Personalized peptide vaccines that are created on the basis of patient leukocyte antigen immune subtypes are currently being tested in clinical trials

Abstract

Effective management of advanced urothelial bladder cancer is challenging. New discoveries that improve our understanding of molecular bladder cancer subtypes have revealed numerous potentially targetable genomic alterations and demonstrated the efficacy of treatments that harness the immune system. These findings have begun to change paradigms of bladder cancer therapy. For example, DNA repair pathway mutations in genes such as ERCC2, FANCC, ATM, RB1, and others can predict responses to neoadjuvant platinum-based chemotherapies and to targeted therapies on the basis of mutation status. Furthermore, an increasing number of pan-cancer clinical trials (commonly referred to as basket or umbrella trials) are enrolling patients on the basis of molecular and genetic predictors of response. These studies promise to provide improved insight into the true utility of personalized medicine in the treatment of bladder cancer and many other cancer types. Finally, therapies that modulate immune responses have shown great benefit in many cancer types. Several immune checkpoint inhibitors that target programmed cell death protein 1 (PD1), its ligand PDL1, and cytotoxic T lymphocyte-associated protein 4 (CTLA4) have already been approved for use in bladder cancer, representing the most important change to the urological oncologist's tool-kit in over a decade. These advances also provide opportunities for personalization of bladder cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potentially actionable mutations are frequent in bladder cancer.
Figure 2: Personalized immunotherapy for the treatment of bladder cancer.

Similar content being viewed by others

References

  1. Antoni, S. et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71, 96–108 (2017).

    Article  PubMed  Google Scholar 

  2. Willis, D. & Kamat, A. M. Nonurothelial bladder cancer and rare variant histologies. Hematol. Oncol. Clin. North Am. 29, 237–252 (2015).

    Article  PubMed  Google Scholar 

  3. Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    Article  PubMed  Google Scholar 

  4. Huncharek, M., Geschwind, J.-F., Witherspoon, B., McGarry, R. & Adcock, D. Intravesical chemotherapy prophylaxis in primary superficial bladder cancer: a meta-analysis of 3703 patients from 11 randomized trials. J. Clin. Epidemiol. 53, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Babjuk, M. et al. EAU guidelines on non–muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur. Urol. 71, 447–461 (2017).

    Article  PubMed  Google Scholar 

  6. Chang, S. S. et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J. Urol. 196, 1021–1029 (2016).

    Article  PubMed  Google Scholar 

  7. Clark, P. E. et al. NCCN guidelines insights: bladder cancer, version 2.2016. J. Natl Compr. Canc. Netw. 14, 1213–1224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Svatek, R. S. et al. The economics of bladder cancer: costs and considerations of caring for this disease. Eur. Urol. 66, 253–262 (2014).

    Article  PubMed  Google Scholar 

  9. Milowsky, M. I. et al. Guideline on muscle-invasive and metastatic bladder cancer (European Association of Urology guideline): American Society of Clinical Oncology Clinical Practice guideline endorsement. J. Clin. Oncol. 34, 1945–1952 (2016).

    Article  PubMed  Google Scholar 

  10. Witjes, J. A. et al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol. 65, 778–792 (2014).

    Article  PubMed  Google Scholar 

  11. Jani, A. B., Efstathiou, J. A. & Shipley, W. U. Bladder preservation strategies. Hematol. Oncol. Clin. North Am. 29, 289–300 (2015).

    Article  PubMed  Google Scholar 

  12. Sternberg, C. N. et al. Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3–pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): an intergroup, open-label, randomised phase 3 trial. Lancet Oncol. 16, 76–86 (2015).

    Article  PubMed  Google Scholar 

  13. Advanced Bladder Cancer Meta-analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis. Lancet 361, 1927–1934 (2003).

  14. Winquist, E., Kirchner, T. S., Segal, R., Chin, J. & Lukka, H. Neoadjuvant chemotherapy for transitional cell carcinoma of the bladder: a systematic review & meta-analysis. J. Urol. 171, 561–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur. Urol. 48, 202–205; discussion 205–206 (2005).

  16. David, K. A., Milowsky, M. I., Ritchey, J., Carroll, P. R. & Nanus, D. M. Low incidence of perioperative chemotherapy for stage III bladder cancer 1998 to 2003: a report from the National Cancer Data Base. J. Urol. 178, 451–454 (2007).

    Article  PubMed  Google Scholar 

  17. Raj, G. V. et al. Contemporary use of perioperative cisplatin-based chemotherapy in patients with muscle-invasive bladder cancer. Cancer 117, 276–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Grossman, H. B. et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 349, 859–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. International Collaboration of Trialists. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J. Clin. Oncol. 29, 2171–2177 (2011).

  20. Takata, R. Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin. Cancer Res. 11, 2625–2636 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Jung, Y. & Lippard, S. J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 107, 1387–1407 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Allen, E. M. V. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Plimack, E. R. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur. Urol. 68, 959–967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01031420 (2015).

  25. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01611662 (2017).

  26. Liu, D. et al. Clinical validation of chemotherapy response biomarker ERCC2 in muscle-invasive urothelial bladder carcinoma. JAMA Oncol. 2, 1094–1096 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Groenendijk, F. H. et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur. Urol. 69, 384–388 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

  29. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iyer, G. et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. 31, 3133–3140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sjödahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Prat, A. et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Papafotiou, G. et al. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat. Commun. 7, 11914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dadhania, V. et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine 12, 105–117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Volkmer, J.-P. et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc. Natl Acad. Sci. USA 109, 2078–2083 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Warrick, J. I. et al. FOXA1, GATA3 and PPARγ cooperate to drive luminal subtype in bladder cancer: a molecular analysis of established human cell lines. Sci. Rep. 6, 38531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McConkey, D. J. et al. Therapeutic opportunities in the intrinsic subtypes of muscle-invasive bladder cancer. Hematol. Oncol. Clin. North Am. 29, 377–394 (2015).

    Article  PubMed  Google Scholar 

  40. Esserman, L. J. et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res. Treat. 132, 1049–1062 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Esserman, L. J. et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657. J. Clin. Oncol. 30, 3242–3249 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. McConkey, D. J., Choi, W. & Dinney, C. P. N. New insights into subtypes of invasive bladder cancer: considerations of the clinician. Eur. Urol. 66, 609–610 (2014).

    Article  PubMed  Google Scholar 

  43. Kiss, B. et al. Her2 alterations in muscle-invasive bladder cancer: patient selection beyond protein expression for targeted therapy. Sci. Rep. 7, 42713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ikeda, S., Hansel, D. E. & Kurzrock, R. Beyond conventional chemotherapy: emerging molecular targeted and immunotherapy strategies in urothelial carcinoma. Cancer Treat. Rev. 41, 699–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Faltas, B. M. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat. Genet. 48, 1490–1499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cha, E. K. et al. Branched evolution and intratumor heterogeneity of urothelial carcinoma of the bladder. J. Clin. Oncol. 32, 293 (2014).

    Article  Google Scholar 

  48. Kim, P. H. et al. Genomic predictors of survival in patients with high-grade urothelial carcinoma of the bladder. Eur. Urol. 67, 198–201 (2015).

    Article  PubMed  Google Scholar 

  49. Janku, F. et al. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res. 73, 276–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Rudd, M. L. et al. A unique spectrum of somatic PIK3CA (p110α) mutations within primary endometrial carcinomas. Clin. Cancer Res. 17, 1331–1340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takeuchi, A. et al. p300 mediates cellular resistance to doxorubicin in bladder cancer. Mol. Med. Rep. 5, 173–176 (2012).

    CAS  PubMed  Google Scholar 

  52. Pouessel, D. et al. Tumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FGFR3 treatment. Ann. Oncol. 27, 1311–1316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  54. Wu, Y.-M. et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams, S. V., Hurst, C. D. & Knowles, M. A. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 22, 795–803 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Sequist, L. V. et al. Phase I study of BGJ398, a selective pan-FGFR inhibitor in genetically preselected advanced solid tumors [abstract]. Cancer Res. 74, CT326 (2014).

    Google Scholar 

  57. Dienstmann, R. et al. First in human study of JNJ-42756493, a potent pan fibroblast growth factor receptor (FGFR) inhibitor in patients with advanced solid tumors. Cancer Res. 74, CT325 (2014).

    Google Scholar 

  58. Lerner, S. P. et al. Summary and recommendations from the National Cancer Institute's clinical trials planning meeting on novel therapeutics for non-muscle invasive bladder cancer. Bladder Cancer 2, 165–202 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nogova, L. et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1–3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J. Clin. Oncol. 35, 157–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01004224 (2017).

  61. Pal, S. K. et al. Efficacy of BGJ398, a fibroblast growth factor receptor (FGFR) 1–3 inhibitor, in patients (pts) with previously treated advanced/metastatic urothelial carcinoma (mUC) with FGFR3 alterations. J. Clin. Oncol. 34, 4517 (2016).

    Article  Google Scholar 

  62. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01703481 (2017).

  63. Tabernero, J. et al. Phase I dose-escalation study of JNJ-42756493, an oral pan–fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 33, 3401–3408 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02365597 (2017).

  65. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01732107 (2017).

  66. Hahn, N. M. et al. A phase II trial of dovitinib in Bcg-unresponsive urothelial carcinoma with Fgfr3 mutations or over-expression: Hoosier Cancer Research network trial Hcrn 12–157. Clin. Cancer Res. 23, 3003–3011 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Chae, Y. K. et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 8, 16052–16074 (2016).

    PubMed Central  Google Scholar 

  68. Herrera-Abreu, M. T. et al. Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer. Cancer Discov. 3, 1058–1071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, L. et al. A functional genetic screen identifies the phosphoinositide 3-kinase pathway as a determinant of resistance to fibroblast growth factor receptor inhibitors in FGFR mutant urothelial cell carcinoma. Eur. Urol. 71, 858–862 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Datta, J. et al. Akt activation mediates acquired resistance to fibroblast growth factor receptor inhibitor BGJ398. Mol. Cancer Ther. 16, 614–624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baldia, P. H. et al. Fibroblast growth factor receptor (FGFR) alterations in squamous differentiated bladder cancer — a putative therapeutic target for a small subgroup. Oncotarget 7, 71429–71439 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01828736 (2017).

  73. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00949455 (2015).

  74. Oudard, S. et al. Multicentre randomised phase II trial of gemcitabine + platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur. J. Cancer 51, 45–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Bellmunt, J. et al. HER2 as a target in invasive urothelial carcinoma. Cancer Med. 4, 844–852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Powles, T. et al. Phase III, double-blind, randomized trial that compared maintenance lapatinib versus placebo after first-line chemotherapy in patients with human epidermal growth factor receptor 1/2–positive metastatic bladder cancer. J. Clin. Oncol. 35, 48–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, J. et al. Preexisting oncogenic events impact trastuzumab sensitivity in ERBB2-amplified gastroesophageal adenocarcinoma. J. Clin. Invest. 124, 5145–5158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jordan, E. J. & Iyer, G. Targeted therapy in advanced bladder cancer. Urol. Clin. North Am. 42, 253–262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kurtoglu, M. et al. Elevating the horizon: emerging molecular and genomic targets in the treatment of advanced urothelial carcinoma. Clin. Genitourin. Cancer 13, 410–420 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Plimack, E. R. & Geynisman, D. M. Targeted therapy for metastatic urothelial cancer: a work in progress. J. Clin. Oncol. 34, 2088–2092 (2016).

    Article  PubMed  Google Scholar 

  81. Choudhury, N. J. et al. Afatinib activity in platinum-refractory metastatic urothelial carcinoma in patients with ERBB alterations. J. Clin. Oncol. 34, 2165–2171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Iyer, G. et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 338, 221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Milowsky, M. I. et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int. 112, 462–470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wagle, N. et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 4, 546–553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Prasad, V. & Vandross, A. Characteristics of exceptional or super responders to cancer drugs. Mayo Clin. Proc. 90, 1639–1649 (2015).

    Article  PubMed  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02243592 (2017).

  87. Poh, A. In search of exceptional responders. Cancer Discov. 5, 8 (2015).

    Article  PubMed  Google Scholar 

  88. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00421889 (2015).

  90. Faleiro, I. et al. Epigenetic therapy in urologic cancers: an update on clinical trials. Oncotarget 8, 12484–12500 (2016).

    PubMed Central  Google Scholar 

  91. Gupta, S. et al. Clinical and translational investigation of pan-HDAC inhibition in advanced urothelial carcinoma (UC). J. Clin. Oncol. 35, 379 (2017).

    Article  Google Scholar 

  92. Helming, K. C., Wang, X. & Roberts, C. W. M. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell 26, 309–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00363883 (2015).

  94. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01780545 (2017).

  95. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00978250 (2017).

  96. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02236195 (2017).

  97. Ler, L. D. et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci. Transl. Med. 9, eaai8312 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01042379 (2016).

  99. Park, J. W. et al. Adaptive randomization of neratinib in early breast cancer. N. Engl. J. Med. 375, 11–22 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rugo, H. S. et al. Adaptive randomization of veliparib–carboplatin treatment in breast cancer. N. Engl. J. Med. 375, 23–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02177695 (2017).

  102. Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith, S. C. et al. Use of yeast chemigenomics and COXEN informatics in preclinical evaluation of anticancer agents. Neoplasia 13, 72–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02643043 (2017).

  105. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00851032 (2017).

  106. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02152254 (2017).

  107. Tsimberidou, A.-M. et al. Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark analyses. Clin. Cancer Res. 20, 4827–4836 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haslem, D. S. et al. A retrospective analysis of precision medicine outcomes in patients with advanced cancer reveals improved progression-free survival without increased health care costs. J. Oncol. Pract. 13, e108–e119 (2017).

    Article  PubMed  Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01566019 (2016).

  110. Massard, C. et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 7, 586–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Le Tourneau, C. et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 16, 1324–1334 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Tsimberidou, A. M. & Kurzrock, R. Precision medicine: lessons learned from the SHIVA trial. Lancet Oncol. 16, e579–e580 (2015).

    Article  PubMed  Google Scholar 

  113. Le Tourneau, C., Belin, L., Paoletti, X., Bièche, I. & Kamal, M. Precision medicine: lessons learned from the SHIVA trial — authors' reply. Lancet Oncol. 16, e581–e582 (2015).

    Article  PubMed  Google Scholar 

  114. Le Tourneau, C. & Kurzrock, R. Targeted therapies: what have we learned from SHIVA? Nat. Rev. Clin. Oncol. 13, 719–720 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02465060 (2017).

  116. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02693535 (2017).

  117. Doroshow, J. H. Update: NCI formulary & NCI-MATCH trial. National Cancer Institute https://deainfo.nci.nih.gov/advisory/bsa/0317/Doroshow.pdf (2017).

    Google Scholar 

  118. Prasad, V. Perspective: the precision-oncology illusion. Nature 537, S63 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Togneri, F. S. et al. Genomic complexity of urothelial bladder cancer revealed in urinary cfDNA. Eur. J. Hum. Genet. 24, 1167–1174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guey, L. T. et al. Genetic susceptibility to distinct bladder cancer subphenotypes. Eur. Urol. 57, 283–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Massari, F. et al. Emerging concepts on drug resistance in bladder cancer: implications for future strategies. Crit. Rev. Oncol. Hematol. 96, 81–90 (2015).

    Article  PubMed  Google Scholar 

  122. Barlow, L. J., Seager, C. M., Benson, M. C. & McKiernan, J. M. Novel intravesical therapies for non-muscle-invasive bladder cancer refractory to BCG. Urol. Oncol. 28, 108–111 (2010).

    Article  PubMed  Google Scholar 

  123. Fakhrejahani, F. et al. Immunotherapies for bladder cancer: a new hope. Curr. Opin. Urol. 25, 586–596 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Muthigi, A., George, A. K., Brancato, S. J. & Agarwal, P. K. Novel immunotherapeutic approaches to the treatment of urothelial carcinoma. Ther. Adv. Urol. 8, 203–214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kamat, A. M. et al. Expert consensus document: consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat. Rev. Urol. 12, 225–235 (2015).

    Article  PubMed  Google Scholar 

  126. Redelman-Sidi, G., Iyer, G., Solit, D. B. & Glickman, M. S. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 73, 1156–1167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Redelman-Sidi, G., Glickman, M. S. & Bochner, B. H. The mechanism of action of BCG therapy for bladder cancer — a current perspective. Nat. Rev. Urol. 11, 153–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Sylvester, R. J., van der Meijden, A. P. M., Witjes, J. A. & Kurth, K. Bacillus calmette-guerin versus chemotherapy for the intravesical treatment of patients with carcinoma in situ of the bladder: a meta-analysis of the published results of randomized clinical trials. J. Urol. 174, 86–91; discussion 91–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Nepple, K. G., Lightfoot, A. J., Rosevear, H. M., O'Donnell, M. A. & Lamm, D. L. Bacillus calmette-guérin with or without interferon α-2b and megadose versus recommended daily allowance vitamins during induction & maintenance intravesical treatment of nonmuscle invasive bladder cancer. J. Urol. 184, 1915–1919 (2010).

  130. Malmström, P.-U. et al. An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin c versus bacillus calmette-guérin for non–muscle-invasive bladder cancer. Eur. Urol. 56, 247–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Herr, H. W., Milan, T. N. & Dalbagni, G. BCG-refractory versus BCG-relapsing non-muscle-invasive bladder cancer: a prospective cohort outcomes study. Urol. Oncol. 33, 108.e1–108.e4 (2015).

    Article  Google Scholar 

  132. Correa, A. F. et al. The role of interferon in the management of BCG refractory nonmuscle invasive bladder cancer. Adv. Urol. 2015, 656918 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wong, Y. N. S. et al. Evolving adoptive cellular therapies in urological malignancies. Lancet Oncol. 18, e341–e353 (2017).

    Article  PubMed  Google Scholar 

  135. Katz, H., Wassie, E. & Alsharedi, M. Checkpoint inhibitors: the new treatment paradigm for urothelial bladder cancer. Med. Oncol. 34, 170 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Goodnow, C. C., Sprent, J., Fazekas de St Groth, B. & Vinuesa, C. G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Drake, C. G., Jaffee, E. & Pardoll, D. M. Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Loskog, A. et al. Human bladder carcinoma is dominated by T-regulatory cells and Th1 inhibitory cytokines. J. Urol. 177, 353–358 (2007).

    Article  PubMed  Google Scholar 

  140. Mohme, M., Riethdorf, S. & Pantel, K. Circulating and disseminated tumour cells – mechanisms of immune surveillance and escape. Nat. Rev. Clin. Oncol. 14, 155–167 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Dyrskjøt, L. et al. Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma. Br. J. Cancer 107, 116–122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sharma, P. et al. Cancer-testis antigens: expression and correlation with survival in human urothelial carcinoma. Clin. Cancer Res. 12, 5442–5447 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Fradet, Y., Picard, V., Bergeron, A. & LaRue, H. Cancer-testis antigen expression in bladder cancer. Prog. Urol. 16, 421–428 (2006).

    PubMed  Google Scholar 

  144. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02869217 (2017).

  146. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02457650 (2016).

  147. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02989064 (2017).

  148. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01626495 (2017).

  149. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01029366 (2017).

  150. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Muranski, P. et al. Increased intensity lymphodepletion and adoptive immunotherapy — how far can we go? Nat. Clin. Pract. Oncol. 3, 668–681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wrzesinski, C. et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J. Immunother. 33, 1–7 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Klebanoff, C., Khong, H., Antony, P., Palmer, D. & Restifo, N. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 26, 111–117 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03132922 (2017).

  159. Masucci, G. V. et al. Validation of biomarkers to predict response to immunotherapy in cancer: volume I — pre-analytical and analytical validation. J. Immunother. Cancer 4, 76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Markham, A. Atezolizumab: first global approval. Drugs 76, 1227–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Ratner, M. Genentech's PD-L1 agent approved for bladder cancer. Nat. Biotechnol. 34, 789–790 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02108652 (2017).

  164. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sidaway, P. Bladder cancer: atezolizumab effective against advanced-stage disease. Nat. Rev. Urol. 13, 238 (2016).

    Article  PubMed  Google Scholar 

  166. [No authors listed.] First-line atezolizumab effective in bladder cancer. Cancer Discov. 6, OF7 (2016).

  167. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02302807 (2017).

  168. Neuman, T. et al. A harmonization study for the use of 22C3 PD-L1 immunohistochemical staining on ventana's platform. J. Thorac. Oncol. 11, 1863–1868 (2016).

    Article  PubMed  Google Scholar 

  169. Rebelatto, M. C. et al. Development of a programmed cell death ligand-1 immunohistochemical assay validated for analysis of non-small cell lung cancer and head and neck squamous cell carcinoma. Diagn. Pathol. 11, 95 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02256436 (2017).

  171. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02853305 (2017).

  173. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02632409 (2017).

  174. Sharma, P. et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 17, 1590–1598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02387996 (2017).

  176. Sharma, P. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 18, 312–322 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02897765 (2017).

  178. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02603432 (2017).

  179. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02516241 (2017).

  180. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01693562 (2017).

  181. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02643303 (2017).

  182. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02527434 (2017).

  183. Carthon, B. C. et al. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res. 16, 2861–2871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01524991 (2017).

  185. Galsky, M. et al. Phase II trial of gemcitabine + cisplatin + ipilimumab in patients with metastatic urothelial cancer. J. Clin. Oncol. 34, 357 (2016).

    Article  Google Scholar 

  186. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02863913 (2016).

  187. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01234311 (2015).

  188. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01513733 (2017).

  189. Ryckman, C., Vandal, K., Rouleau, P., Talbot, M. & Tessier, P. A. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 170, 3233–3242 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Koike, A. et al. Dynamic mobility of immunological cells expressing S100A8 and S100A9 in vivo: a variety of functional roles of the two proteins as regulators in acute inflammatory reaction. Inflammation 35, 409–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Nakhlé, J. et al. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer. Oncoimmunology 5, e1145333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ribas, A. & Tumeh, P. C. The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin. Cancer Res. 20, 4982–4984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Drake, C. G., Bivalacqua, T. J. & Hahn, N. M. Programmed cell death ligand-1 blockade in urothelial bladder cancer: to select or not to select. J. Clin. Oncol. 34, 3115–3116 (2016).

    Article  PubMed  Google Scholar 

  194. Sica, G. L. & Ramalingam, S. S. Assays for PD-L1 expression: do all roads lead to rome? JAMA Oncol. 3, 1058–1059 (2017).

    Article  PubMed  Google Scholar 

  195. Hirsch, F. R. et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol. 12, 208–222 (2017).

    Article  PubMed  Google Scholar 

  196. Yu, H. et al. PD-L1 expression by two complementary diagnostic assays and mRNA in situ hybridization in small cell lung cancer. J. Thorac. Oncol. 12, 110–120 (2017).

    Article  PubMed  Google Scholar 

  197. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Sasada, T. et al. Overcoming the hurdles of randomised clinical trials of therapeutic cancer vaccines. Eur. J. Cancer 46, 1514–1519 (2010).

    Article  PubMed  Google Scholar 

  200. Sakamoto, S., Noguchi, M., Yamada, A., Itoh, K. & Sasada, T. Prospect and progress of personalized peptide vaccinations for advanced cancers. Expert Opin. Biol. Ther. 16, 689–698 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Chung, D.-S., Kim, C.-H. & Hong, Y.-K. in Glioma (ed. Yamanaka, R.) 143–150 (Springer, 2012).

    Book  Google Scholar 

  202. Hirayama, M. & Nishimura, Y. The present status and future prospects of peptide-based cancer vaccines. Int. Immunol. 28, 319–328 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02015104 (2017).

  204. Ahmad, S., Lam, T. B. & N'Dow, J. Significance of MUC1 in bladder cancer. BJU Int. 115, 161–162 (2015).

    Article  PubMed  Google Scholar 

  205. Hegele, A. et al. CA19.9 and CEA in transitional cell carcinoma of the bladder: serological and immunohistochemical findings. Anticancer Res. 30, 5195–5200 (2010).

    PubMed  Google Scholar 

  206. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02010203 (2017).

  207. Keehn, A., Gartrell, B. & Schoenberg, M. P. Vesigenurtacel-L (HS-410) in the management of high-grade nonmuscle invasive bladder cancer. Future Oncol. 12, 2673–2682 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Steinberg, G. D. et al. Immune response results of vesigenurtacel-l (HS-410) in combination with BCG from a randomized phase II trial in patients with non-muscle invasive bladder cancer (NMIBC). J. Clin. Oncol. 35, 319–319 (2017).

    Article  Google Scholar 

  209. Sasada, T., Yamada, A., Noguchi, M. & Itoh, K. Personalized peptide vaccine for treatment of advanced cancer. Curr. Med. Chem. 21, 2332–2345 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Matsumoto, K. et al. A phase I study of personalized peptide vaccination for advanced urothelial carcinoma patients who failed treatment with methotrexate, vinblastine, adriamycin and cisplatin. BJU Int. 108, 831–838 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Noguchi, M. et al. An open-label, randomized phase II trial of personalized peptide vaccination in patients with bladder cancer that progressed after platinum-based chemotherapy. Clin. Cancer Res. 22, 54–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Hackl, H., Charoentong, P., Finotello, F. & Trajanoski, Z. Computational genomics tools for dissecting tumour-immune cell interactions. Nat. Rev. Genet. 17, 441–458 (2016).

    Article  CAS  PubMed  Google Scholar 

  213. Aragon-Ching, J. B. & Trump, D. L. Targeted therapies in the treatment of urothelial cancers. Urol. Oncol. 35, 465–472 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Mendoza, M. C., Er, E. E. & Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320–328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Vallo, S. et al. Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics. Transl Oncol. 8, 210–216 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02381314 (2017).

Download references

Acknowledgements

The authors thank R. T. Jones for his significant input and helpful suggestions to this work and all members of the Theodorescu laboratory.

Author information

Authors and Affiliations

Authors

Contributions

K.F. researched data for the article. Both authors made substantial contributions to discussion of the manuscript content and wrote the article. D.T. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dan Theodorescu.

Ethics declarations

Competing interests

D.T. is co-founder of Aurora Oncology and has stock options in and is on the scientific advisory boards of Machavert, Precision Profile, and Urogen. D.T. also holds intellectual property (through the University of Colorado) that has been licensed to NantHealth. K.M.F. declares no competing interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felsenstein, K., Theodorescu, D. Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy. Nat Rev Urol 15, 92–111 (2018). https://doi.org/10.1038/nrurol.2017.179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing