Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Patient-derived xenografts as in vivo models for research in urological malignancies

Key Points

  • Lack of appropriate models that recapitulate the complexity and heterogeneity of urological tumours precludes most of the preclinical reagents that enter clinical trials from achieving regulatory approval

  • Patient-derived xenograft (PDX) models are characterized by direct engraftment of patient-derived tumour fragments into immunocompromised mice, improving preservation of the identity of the original tumours

  • Use of urological tumour PDX models for analysing tumour biology and, more importantly, in drug development has increased

  • Several agents targeting immune systems have shown promising results in kidney and bladder cancer, but they require PDX models established in mice with an intact immune system to trigger an immune response to the tumour

  • International collaboration for sharing PDX models is a requisite for improving patient outcomes.

Abstract

Lack of appropriate models that recapitulate the complexity and heterogeneity of urological tumours precludes most of the preclinical reagents that target urological tumours from receiving regulatory approval. Patient-derived xenograft (PDX) models are characterized by direct engraftment of patient-derived tumour fragments into immunocompromised mice. PDXs can maintain the original histology, as well as the molecular and genetic characteristics of the source tumour. Thus, PDX models have various advantages over conventional cell-line-derived xenograft (CDX) and other models, which has resulted in an increase in the use of urological tumour PDXs in the analysis of tumour biology and, importantly, for drug development and treatment decisions in personalized medicine. PDX models of urological malignancies have great potential to be used for both basic and clinical research, but limitations exist and need to be overcome. In particular, several agents targeting the immune system have shown promising results in kidney and bladder cancer; however, establishing PDX models in mice with an intact immune system so that an immune response against the tumour is triggered is important to investigate these new therapeutics. Moreover, international collaboration to share PDX models is essential for research concerning fatal urological tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcutaneous transplantation of patient-derived xenografts.
Figure 2: Application of patient-derived xenograft models in urological cancer.

Similar content being viewed by others

References

  1. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Arrowsmith, J. & Miller, P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat. Rev. Drug Discov. 12, 569 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. DiMasi, J. A., Reichert, J. M., Feldman, L. & Malins, A. Clinical approval success rates for investigational cancer drugs. Clin. Pharmacol. Ther. 94, 329–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malaney, P., Nicosia, S. V. & Dave, V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 344, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Morton, C. L. & Houghton, P. J. Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2, 247–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Michiel Sedelaar, J. P., Dalrymple, S. S. & Isaacs, J. T. Of mice and men — warning: intact versus castrated adult male mice as xenograft hosts are equivalent to hypogonadal versus abiraterone treated aging human males, respectively. Prostate 73, 1316–1325 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Cho, S. Y. et al. An integrative approach to precision cancer medicine using patient-derived xenografts. Mol. Cells 39, 77–86 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi, T., Inoue, T., Kamba, T. & Ogawa, O. Experimental evidence of persistent androgen-receptor-dependency in castration-resistant prostate cancer. Int. J. Mol. Sci. 14, 15615–15635 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shah, R. B. et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 64, 9209–9216 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Toivanen, R. et al. A preclinical xenograft model identifies castration-tolerant cancer-repopulating cells in localized prostate tumors. Sci. Transl Med. 5, 187ra71 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Craft, N. et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 59, 5030–5036 (1999).

    CAS  PubMed  Google Scholar 

  15. Hoehn, W. et al. Prostatic adenocarcinoma PC EW, a new human tumor line transplantable in nude mice. Prostate 5, 445–452 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. van Weerden, W. M. et al. Development of seven new human prostate tumor xenograft models and their histopathological characterization. Am. J. Pathol. 149, 1055–1062 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. van Weerden, W. M. & Romijn, J. C. Use of nude mouse xenograft models in prostate cancer research. Prostate 43, 263–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Pretlow, T. G. et al. Xenografts of primary human prostatic carcinoma. J. Natl Cancer Inst. 85, 394–398 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Laitinen, S., Karhu, R., Sawyers, C. L., Vessella, R. L. & Visakorpi, T. Chromosomal aberrations in prostate cancer xenografts detected by comparative genomic hybridization. Genes Chromosomes Cancer 35, 66–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. True, L. D. et al. A neuroendocrine/small cell prostate carcinoma xenograft-LuCaP 49. Am. J. Pathol. 161, 705–715 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Klein, K. A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Harper, M. E., Goddard, L., Smith, C. & Nicholson, R. I. Characterization of a transplantable hormone-responsive human prostatic cancer xenograft TEN12 and its androgen-resistant sublines. Prostate 58, 13–22 (2004).

    Article  PubMed  Google Scholar 

  23. McCulloch, D. R., Opeskin, K., Thompson, E. W. & Williams, E. D. BM18: a novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis. Prostate 65, 35–43 (2005).

    Article  PubMed  Google Scholar 

  24. Kimura, T. et al. A novel androgen-dependent prostate cancer xenograft model derived from skin metastasis of a Japanese patient. Prostate 69, 1660–1667 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, T. et al. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res. 65, 9611–9616 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Terada, N. et al. Antiandrogen withdrawal syndrome and alternative antiandrogen therapy associated with the W741C mutant androgen receptor in a novel prostate cancer xenograft. Prostate 70, 252–261 (2010).

    CAS  PubMed  Google Scholar 

  28. Hoehn, W., Schroeder, F. H., Reimann, J. F., Joebsis, A. C. & Hermanek, P. Human prostatic adenocarcinoma: some characteristics of a serially transplantable line in nude mice (PC 82). Prostate 1, 95–104 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Ellis, W. J. et al. Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res. 2, 1039–1048 (1996).

    CAS  PubMed  Google Scholar 

  30. Marques, R. B. et al. The human PC346 xenograft and cell line panel: a model system for prostate cancer progression. Eur. Urol. 49, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Mostaghel, E. A. et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 17, 5913–5925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thadani-Mulero, M. et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res. 74, 2270–2282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagabhushan, M. et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res. 56, 3042–3046 (1996).

    CAS  PubMed  Google Scholar 

  34. Nickerson, T. et al. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res. 61, 6276–6280 (2001).

    CAS  PubMed  Google Scholar 

  35. Seedhouse, S. J. et al. Metastatic phenotype in CWR22 prostate cancer xenograft following castration. Prostate 76, 359–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Corey, E. et al. LuCaP 35: a new model of prostate cancer progression to androgen independence. Prostate 55, 239–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Terada, N. et al. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Res. 70, 1606–1615 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Sharma, N. L. et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Yoshikawa, T. et al. An original patient-derived xenograft of prostate cancer with cyst formation. Prostate 76, 994–1003 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Li, Z. G. et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J. Clin. Invest. 118, 2697–2710 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, Y. C. et al. Identification of bone-derived factors conferring de novo therapeutic resistance in metastatic prostate cancer. Cancer Res. 75, 4949–4959 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Small, E. J. et al. Clinical and genomic characterization of metastatic small cell/neuroendocrine prostate cancer (SCNC) and intermediate atypical prostate cancer (IAC): results from the SU2C/PCF/AACRWest Coast Prostate Cancer Dream Team (WCDT) [abstract]. J. Clin. Oncol. 34 (Suppl.), 5019 (2016).

    Article  Google Scholar 

  45. Hirano, D., Okada, Y., Minei, S., Takimoto, Y. & Nemoto, N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur. Urol. 45, 586–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Nadal, R., Schweizer, M., Kryvenko, O. N., Epstein, J. I. & Eisenberger, M. A. Small cell carcinoma of the prostate. Nat. Rev. Urol. 11, 213–219 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tzelepi, V. et al. Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin. Cancer Res. 18, 666–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Aparicio, A. et al. Neuroendocrine prostate cancer xenografts with large-cell and small-cell features derived from a single patient's tumor: morphological, immunohistochemical, and gene expression profiles. Prostate 71, 846–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Akamatsu, S. et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 12, 922–936 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, J. K. et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29, 536–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Motzer, R. J. et al. Kidney cancer. J. Natl Compr. Canc. Netw. 9, 960–977 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sivanand, S. et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci. Transl Med. 4, 137ra75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pavia-Jimenez, A., Tcheuyap, V. T. & Brugarolas, J. Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat. Protoc. 9, 1848–1859 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karam, J. A. et al. Development and characterization of clinically relevant tumor models from patients with renal cell carcinoma. Eur. Urol. 59, 619–628 (2011).

    Article  PubMed  Google Scholar 

  57. Glukhova, L. et al. Overrepresentation of 7q31 and 17q in renal cell carcinomas. Genes Chromosomes Cancer 22, 171–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Schuller, A. G. et al. The MET inhibitor AZD6094 (aavolitinib, HMPL-504) induces regression in papillary renal cell carcinoma patient-derived xenograft models. Clin. Cancer Res. 21, 2811–2819 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Hammers, H. J. et al. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study. Mol. Cancer Ther. 9, 1525–1535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miles, K. M. et al. Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts. PLoS ONE 9, e112371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adelaiye, R. et al. Sunitinib dose escalation overcomes transient resistance in clear cell renal cell carcinoma and is associated with epigenetic modifications. Mol. Cancer Ther. 14, 513–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Thong, A. E. et al. Tissue slice grafts of human renal cell carcinoma: an authentic preclinical model with high engraftment rate and metastatic potential. Urol. Oncol. 32, 43.e23–43.e30 (2014).

    Article  Google Scholar 

  63. Valta, M. P. et al. Development of a realistic in vivo bone metastasis model of human renal cell carcinoma. Clin. Exp. Metastasis 31, 573–584 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuen, J. S. et al. Inhibition of angiogenic and non-angiogenic targets by sorafenib in renal cell carcinoma (RCC) in a RCC xenograft model. Br. J. Cancer 104, 941–947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grisanzio, C. et al. Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumours in patients. J. Pathol. 225, 212–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Varna, M. et al. Stability of preclinical models of aggressive renal cell carcinomas. Int. J. Clin. Exp. Pathol. 7, 2950–2962 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Shibasaki, N. et al. Role of IL13RA2 in sunitinib resistance in clear cell renal cell carcinoma. PLoS ONE 10, e0130980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arakaki, R. et al. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 5, 2920–2933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Diaz-Montero, C. M. et al. MEK inhibition abrogates sunitinib resistance in a renal cell carcinoma patient-derived xenograft model. Br. J. Cancer 115, 920–928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lang, H. et al. Establishment of a large panel of patient-derived preclinical models of human renal cell carcinoma. Oncotarget 7, 59336–59359 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wood, D. P. in Campbell–Walsh Urology 10th edn 2309–2334 (Saunders, 2012).

    Book  Google Scholar 

  74. Roupret, M. et al. European Association of Urology guidelines on upper urinary tract urothelial cell carcinoma: 2015 update. Eur. Urol. 68, 868–879 (2015).

    Article  PubMed  Google Scholar 

  75. Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    Article  PubMed  Google Scholar 

  76. Prasad, S. M., Decastro, G. J. & Steinberg, G. D. Urothelial carcinoma of the bladder: definition, treatment and future efforts. Nat. Rev. Urol. 8, 631–642 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Sufrin, G., McGarry, M. P., Sandberg, A. A. & Murphy, G. P. Heterotransplantation of human transitional cell carcinoma in athymic mice. J. Urol. 121, 159–161 (1979).

    Article  CAS  PubMed  Google Scholar 

  78. Naito, S. et al. Heterotransplantation of human urinary bladder cancers in nude mice. Invest. Urol. 18, 285–288 (1981).

    CAS  PubMed  Google Scholar 

  79. Matthews, P. N., Grant, A. G. & Hermon-Taylor, J. The growth of human bladder and kidney cancers as xenografts in nude mice and rats. Urol. Res. 10, 293–299 (1982).

    Article  CAS  PubMed  Google Scholar 

  80. Kovnat, A., Armitage, M. & Tannock, I. Xenografts of human bladder cancer in immune-deprived mice. Cancer Res. 42, 3696–3703 (1982).

    CAS  PubMed  Google Scholar 

  81. Bernardo, C., Costa, C., Sousa, N., Amado, F. & Santos, L. Patient-derived bladder cancer xenografts: a systematic review. Transl Res. 166, 324–331 (2015).

    Article  PubMed  Google Scholar 

  82. Skowron, K. B. et al. Basal tumor cell isolation and patient-derived xenograft engraftment identify high-risk clinical bladder cancers. Sci. Rep. 6, 35854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wei, L. et al. Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts. Oncotarget 7, 76374–76389 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Kobayashi, T., Owczarek, T. B., McKiernan, J. M. & Abate-Shen, C. Modelling bladder cancer in mice: opportunities and challenges. Nat. Rev. Cancer 15, 42–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Izquierdo, L., Mengual, L., Gazquez, C., Ingelmo-Torres, M. & Alcaraz, A. Molecular characterization of upper urinary tract tumours. BJU Int. 106, 868–872 (2010).

    Article  PubMed  Google Scholar 

  86. Sfakianos, J. P. et al. Genomic characterization of upper tract urothelial carcinoma. Eur. Urol. 68, 970–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Russell, P. J. et al. Bladder cancer xenografts: a model of tumor cell heterogeneity. Cancer Res. 46, 2035–2040 (1986).

    CAS  PubMed  Google Scholar 

  88. McCue, P. A. et al. Development of secondary structure, growth characteristics and cytogenetic analysis of human transitional cell carcinoma xenografts in scid/scid mice. J. Urol. 155, 1128–1132 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Abe, T. et al. Establishment and characterization of human urothelial cancer xenografts in severe combined immunodeficient mice. Int. J. Urol. 13, 47–57 (2006).

    Article  PubMed  Google Scholar 

  90. Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–14021 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Park, B. et al. Development and characterization of a bladder cancer xenograft model using patient-derived tumor tissue. Cancer Sci. 104, 631–638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hofner, T. et al. Development and characteristics of preclinical experimental models for the research of rare neuroendocrine bladder cancer. J. Urol. 190, 2263–2270 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Ciamporcero, E. et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35, 1541–1553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bernardo, C. et al. Patient-derived sialyl-Tn-positive invasive bladder cancer xenografts in nude mice: an exploratory model study. Anticancer Res. 34, 735–744 (2014).

    CAS  PubMed  Google Scholar 

  95. Jager, W. et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget 6, 21522–21532 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pan, C. X. et al. Development and characterization of bladder cancer patient-derived xenografts for molecularly guided targeted therapy. PLoS ONE 10, e0134346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Russell, P. J. et al. Features of squamous and adenocarcinoma in the same cell in a xenografted human transitional cell carcinoma: evidence of a common histogenesis? Urol. Res. 16, 79–84 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Hay, J. H., Busuttil, A., Steel, C. M. & Duncan, W. The growth and histological characteristics of a series of human bladder cancer xenografts. Radiother. Oncol. 7, 331–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  100. Mouse Tumor Biology Database. Patient derived xenograft search form. MTB http://tumor.informatics.jax.org/mtbwi/pdxSearch.do (2016).

  101. Cirone, P., Andresen, C. J., Eswaraka, J. R., Lappin, P. B. & Bagi, C. M. Patient-derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer. Cancer Chemother. Pharmacol. 73, 525–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Lawrence, M. G. et al. A preclinical xenograft model of prostate cancer using human tumors. Nat. Protoc. 8, 836–848 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 7–13 (2016).

    Google Scholar 

  104. van Weerden, W. M., Bangma, C. & de Wit, R. Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer. Br. J. Cancer 100, 13–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tomayko, M. M. & Reynolds, C. P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148–154 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Bosma, M. J. & Carroll, A. M. The SCID mouse mutant: definition, characterization, and potential uses. Annu. Rev. Immunol. 9, 323–350 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Shultz, L. D. et al. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb. Protoc. 2014, 694–708 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Pearson, T., Greiner, D. L. & Shultz, L. D. Humanized SCID mouse models for biomedical research. Curr. Top. Microbiol. Immunol. 324, 25–51 (2008).

    CAS  PubMed  Google Scholar 

  110. Jackson Laboratory. Patient-derived xenograft (PDX) models. JAX https://www.jax.org/jax-mice-and-services/in-vivo-pharmacology/oncology-services/pdx-tumors (2016).

  111. Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V. & Greiner, D. L. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12, 786–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2, 223–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pearson, T. et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin. Exp. Immunol. 154, 270–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ito, R., Takahashi, T., Katano, I. & Ito, M. Current advances in humanized mouse models. Cell. Mol. Immunol. 9, 208–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Landis, M. D., Lehmann, B. D., Pietenpol, J. A. & Chang, J. C. Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res. 15, 201 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shultz, L. D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191 (1995).

    CAS  PubMed  Google Scholar 

  118. Wang, Y. et al. A human prostatic epithelial model of hormonal carcinogenesis. Cancer Res. 61, 6064–6072 (2001).

    CAS  PubMed  Google Scholar 

  119. Wang, Y. et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate 64, 149–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Saar, M. et al. Orthotopic tumorgrafts in nude mice: a new method to study human prostate cancer. Prostate 75, 1526–1537 (2015).

    Article  PubMed  Google Scholar 

  121. Jager, W. et al. Ultrasound-guided intramural inoculation of orthotopic bladder cancer xenografts: a novel high-precision approach. PLoS ONE 8, e59536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jager, W. et al. Minimally invasive establishment of murine orthotopic bladder xenografts. J. Vis. Exp. 84, e51123 (2014).

    Google Scholar 

  123. Pearson, A. T. et al. Patient-derived xenograft (PDX) tumors increase growth rate with time. Oncotarget 7, 7993–8005 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Cooper, C. S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet. 47, 367–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Morrison, C. D. et al. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer. Proc. Natl Acad. Sci. USA 111, E672–E681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Bertotti, A. et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Alkema, N. G. et al. Biobanking of patient and patient-derived xenograft ovarian tumour tissue: efficient preservation with low and high fetal calf serum based methods. Sci. Rep. 5, 14495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cui, J. H., Krueger, U., Henne-Bruns, D., Kremer, B. & Kalthoff, H. Orthotopic transplantation model of human gastrointestinal cancer and detection of micrometastases. World J. Gastroenterol. 7, 381–386 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Linnebacher, M. et al. Cryopreservation of human colorectal carcinomas prior to xenografting. BMC Cancer 10, 362 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sorio, C. et al. Successful xenografting of cryopreserved primary pancreatic cancers. Virchows Arch. 438, 154–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Lin, D. et al. Next generation patient-derived prostate cancer xenograft models. Asian J. Androl. 16, 407–412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Goldenberg, D. M. & Pavia, R. A. In vivo horizontal oncogenesis by a human tumor in nude mice. Proc. Natl Acad. Sci. USA 79, 2389–2392 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Russell, P. J. et al. Tumour-induced host stromal-cell transformation: induction of mouse spindle-cell fibrosarcoma not mediated by gene transfer. Int. J. Cancer 46, 299–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. Bondarenko, G. et al. Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia 17, 735–741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wetterauer, C. et al. Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate 75, 585–592 (2015).

    Article  PubMed  Google Scholar 

  139. Radaelli, E. et al. Spontaneous post-transplant disorders in NOD. Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) mice engrafted with patient-derived metastatic melanomas. PLoS ONE 10, e0124974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Morote, J. et al. Redefining clinically significant castration levels in patients with prostate cancer receiving continuous androgen deprivation therapy. J. Urol. 178, 1290–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Mohr, B. A., Guay, A. T., O'Donnell, A. B. & McKinlay, J. B. Normal, bound and nonbound testosterone levels in normally ageing men: results from the Massachusetts Male Ageing Study. Clin. Endocrinol. (Oxf.) 62, 64–73 (2005).

    Article  CAS  Google Scholar 

  142. van Weerden, W. M., Bierings, H. G., van Steenbrugge, G. J., de Jong, F. H. & Schroder, F. H. Adrenal glands of mouse and rat do not synthesize androgens. Life Sci. 50, 857–861 (1992).

    Article  CAS  PubMed  Google Scholar 

  143. Pandhare-Dash, J., Mantri, C. K., Gong, Y., Chen, Z. & Dash, C. XMRV accelerates cellular proliferation, transformational activity, and invasiveness of prostate cancer cells by downregulating p27(Kip1). Prostate 72, 886–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Hempel, H. A., Burns, K. H., De Marzo, A. M. & Sfanos, K. S. Infection of xenotransplanted human cell lines by murine retroviruses: a lesson brought back to light by XMRV. Front. Oncol. 3, 156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Williams, S. A., Anderson, W. C., Santaguida, M. T. & Dylla, S. J. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab. Invest. 93, 970–982 (2013).

    Article  PubMed  Google Scholar 

  146. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Kleb, B. et al. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas. Epigenetics 11, 184–193 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lee, Y. P. et al. Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe-combined-immunodeficient mouse model. Cancer Res. 62, 5564–5570 (2002).

    CAS  PubMed  Google Scholar 

  149. Lee, Y. C. et al. BMP4 promotes prostate tumor growth in bone through osteogenesis. Cancer Res. 71, 5194–5203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, Y. C. et al. Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment. Mol. Cell. Proteomics 14, 471–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Cottu, P. et al. Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Clin. Cancer Res. 20, 4314–4325 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Bertolini, G. et al. Microenvironment-modulated metastatic CD133+/CXCR4+/EpCAM- lung cancer-initiating cells sustain tumor dissemination and correlate with poor prognosis. Cancer Res. 75, 3636–3649 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Simoes, B. M. et al. Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity. Cell Rep. 12, 1968–1977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Garralda, E. et al. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin. Cancer Res. 20, 2476–2484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brugarolas Laboratory. Research program overview. UTSouthwestern http://www3.utsouthwestern.edu/brugarolaslab/research-programs.php (2016).

  157. Wolff, N. C. et al. High-throughput simultaneous screen and counterscreen identifies homoharringtonine as synthetic lethal with von Hippel-Lindau loss in renal cell carcinoma. Oncotarget 6, 16951–16962 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Azad, A. A. et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 21, 2315–2324 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yamamoto, K. et al. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer. Oncotarget 7, 61469–61484 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Fong, E. L. et al. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials 77, 164–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl Med. 5, 179ra47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yu, M. et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cayrefourcq, L. et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 75, 892–901 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Williams, E. S. et al. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J. Vis. Exp. 104, e53182 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.I., N.T., T.K., and O.O. researched the data for the article. All authors substantially contributed to discussion of content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Osamu Ogawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Prostate cancer patient-derived xenograft (PDX) models. (DOC 102 kb)

Supplementary information S2 (table)

Urothelial cancer patient-derived xenograft PDX models. (DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, T., Terada, N., Kobayashi, T. et al. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat Rev Urol 14, 267–283 (2017). https://doi.org/10.1038/nrurol.2017.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.19

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer