Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the conserved herpesvirus fusion regulator complex gH–gL

Abstract

Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH–gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH–gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, we propose that gH–gL activates gB for fusion, possibly through direct binding. Formation of a gB–gH–gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB–gH–gL interface a promising antiviral target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the HSV-2 gH–gL complex.
Figure 2: Domains of gH and gL.
Figure 3: gH–gL interface.
Figure 4: Locations of several predicted heptad repeats and fusion peptides in gH.
Figure 5: The epitope of the HSV-1 neutralizing antibody LP11 defines the gB binding site.
Figure 6: Effect of anti-gH antibodies on gB–gH BiMC.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Spear, P.G. & Longnecker, R. Herpesvirus entry: an update. J. Virol. 77, 10179–10185 (2003).

    Article  CAS  Google Scholar 

  2. Heldwein, E.E. & Krummenacher, C. Entry of herpesviruses into mammalian cells. Cell. Mol. Life Sci. 65, 1653–1668 (2008).

    Article  CAS  Google Scholar 

  3. Ryckman, B.J. et al. Characterization of the human cytomegalovirus gH/gL/UL128–131 complex that mediates entry into epithelial and endothelial cells. J. Virol. 82, 60–70 (2008).

    Article  CAS  Google Scholar 

  4. Wickner, W. & Schekman, R. Membrane fusion. Nat. Struct. Mol. Biol. 15, 658–664 (2008).

    Article  CAS  Google Scholar 

  5. Heldwein, E.E. et al. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313, 217–220 (2006).

    Article  CAS  Google Scholar 

  6. Backovic, M. & Jardetzky, T.S. Class III viral membrane fusion proteins. Curr. Opin. Struct. Biol. 19, 189–196 (2009).

    Article  CAS  Google Scholar 

  7. Roche, S., Bressanelli, S., Rey, F.A. & Gaudin, Y. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313, 187–191 (2006).

    Article  CAS  Google Scholar 

  8. Kadlec, J., Loureiro, S., Abrescia, N.G., Stuart, D.I. & Jones, I.M. The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat. Struct. Mol. Biol. 15, 1024–1030 (2008).

    Article  CAS  Google Scholar 

  9. Peng, T. et al. Structural and antigenic analysis of a truncated form of the herpes simplex virus glycoprotein gH-gL complex. J. Virol. 72, 6092–6103 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kinzler, E.R. & Compton, T. Characterization of human cytomegalovirus glycoprotein-induced cell-cell fusion. J. Virol. 79, 7827–7837 (2005).

    Article  CAS  Google Scholar 

  11. Cole, N.L. & Grose, C. Membrane fusion mediated by herpesvirus glycoproteins: the paradigm of varicella-zoster virus. Rev. Med. Virol. 13, 207–222 (2003).

    Article  CAS  Google Scholar 

  12. Pertel, P.E. Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J. Virol. 76, 4390–4400 (2002).

    Article  CAS  Google Scholar 

  13. Subramanian, R.P. & Geraghty, R.J. Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proc. Natl. Acad. Sci. USA 104, 2903–2908 (2007).

    Article  CAS  Google Scholar 

  14. Avitabile, E., Forghieri, C. & Campadelli-Fiume, G. Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein. J. Virol. 81, 11532–11537 (2007).

    Article  CAS  Google Scholar 

  15. Atanasiu, D. et al. Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc. Natl. Acad. Sci. USA 104, 18718–18723 (2007).

    Article  CAS  Google Scholar 

  16. Cairns, T.M. et al. N-terminal mutants of herpes simplex virus type 2 gH are transported without gL but require gL for function. J. Virol. 81, 5102–5111 (2007).

    Article  CAS  Google Scholar 

  17. Grunewald, K. et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302, 1396–1398 (2003).

    Article  Google Scholar 

  18. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  19. Hutchinson, L. et al. A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J. Virol. 66, 2240–2250 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Galdiero, M. et al. Site-directed and linker insertion mutangenesis of herpes simplex virus type 1 glycoprotein H. J. Virol. 71, 2163–2170 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cairns, T.M., Landsburg, D.J., Whitbeck, J.C., Eisenberg, R.J. & Cohen, G.H. Contribution of cysteine residues to the structure and function of herpes simplex virus gH/gL. Virology 332, 550–562 (2005).

    Article  CAS  Google Scholar 

  22. Klyachkin, Y.M., Stoops, K.D. & Geraghty, R.J. Herpes simplex virus type 1 glycoprotein L mutants that fail to promote trafficking of glycoprotein H and fail to function in fusion can induce binding of glycoprotein L-dependent anti-glycoprotein H antibodies. J. Gen. Virol. 87, 759–767 (2006).

    Article  CAS  Google Scholar 

  23. Roop, C., Hutchinson, L. & Johnson, D.C. A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J. Virol. 67, 2285–2297 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).

    Article  CAS  Google Scholar 

  25. Tsodikov, O.V., Record, M.T. Jr. & Sergeev, Y.V. Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J. Comput. Chem. 23, 600–609 (2002).

    Article  CAS  Google Scholar 

  26. Galdiero, S. et al. Fusogenic domains in herpes simplex virus type 1 glycoprotein H. J. Biol. Chem. 280, 28632–28643 (2005).

    Article  CAS  Google Scholar 

  27. Galdiero, S. et al. Evidence for a role of the membrane-proximal region of herpes simplex virus type 1 glycoprotein H in membrane fusion and virus inhibition. ChemBioChem 8, 885–895 (2007).

    Article  CAS  Google Scholar 

  28. Galdiero, S. et al. Analysis of a membrane interacting region of herpes simplex virus type 1 glycoprotein H. J. Biol. Chem. 283, 29993–30009 (2008).

    Article  CAS  Google Scholar 

  29. Lopper, M. & Compton, T. Coiled-coil domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion. J. Virol. 78, 8333–8341 (2004).

    Article  CAS  Google Scholar 

  30. Galdiero, S. et al. Analysis of synthetic peptides from heptad-repeat domains of herpes simplex virus type 1 glycoproteins H and B. J. Gen. Virol. 87, 1085–1097 (2006).

    Article  CAS  Google Scholar 

  31. Gianni, T., Martelli, P.L., Casadio, R. & Campadelli-Fiume, G. The ectodomain of herpes simplex virus glycoprotein H contains a membrane α-helix with attributes of an internal fusion peptide, positionally conserved in the Herpesviridae family. J. Virol. 79, 2931–2940 (2005).

    Article  CAS  Google Scholar 

  32. Gianni, T., Menotti, L. & Campadelli-Fiume, G. A heptad repeat in herpes simplex virus 1 gH, located downstream of the α-helix with attributes of a fusion peptide, is critical for virus entry and fusion. J. Virol. 79, 7042–7049 (2005).

    Article  CAS  Google Scholar 

  33. Gianni, T., Piccoli, A., Bertucci, C. & Campadelli-Fiume, G. Heptad repeat 2 in herpes simplex virus 1 gH interacts with heptad repeat 1 and is critical for virus entry and fusion. J. Virol. 80, 2216–2224 (2006).

    Article  CAS  Google Scholar 

  34. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  Google Scholar 

  35. Gompels, U. & Minson, A. The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153, 230–247 (1986).

    Article  CAS  Google Scholar 

  36. Buckmaster, E.A., Gompels, U. & Minson, A. Characterisation and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103 molecular weight. Virology 139, 408–413 (1984).

    Article  CAS  Google Scholar 

  37. Showalter, S.D., Zweig, M. & Hampar, B. Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect. Immun. 34, 684–692 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gompels, U.A. et al. Characterization and sequence analyses of antibody-selected antigenic variants of herpes simplex virus show a conformationally complex epitope on glycoprotein H. J. Virol. 65, 2393–2401 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Atanasiu, D. et al. Bimolecular complementation defines functional regions of herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J. Virol. 84, 3825–3834 (2010).

    Article  CAS  Google Scholar 

  40. Muggeridge, M.I. Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells. J. Gen. Virol. 81, 2017–2027 (2000).

    Article  CAS  Google Scholar 

  41. Lamb, R.A. & Parks, G.D. Paramyxoviridae: the viruses and their replication. in Fields Virology (eds. Knipe, D.M. & Howley, P.M.) 1449–1496 (Lippincott, Williams & Wilkins, Philadelphia, USA, 2006).

  42. Paterson, R.G., Hiebert, S.W. & Lamb, R.A. Expression at the cell surface of biologically active fusion and hemagglutinin/neuraminidase proteins of the paramyxovirus simian virus 5 from cloned cDNA. Proc. Natl. Acad. Sci. USA 82, 7520–7524 (1985).

    Article  CAS  Google Scholar 

  43. McShane, M.P. & Longnecker, R. Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. Proc. Natl. Acad. Sci. USA 101, 17474–17479 (2004).

    Article  CAS  Google Scholar 

  44. Farnsworth, A. et al. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc. Natl. Acad. Sci. USA 104, 10187–10192 (2007).

    Article  CAS  Google Scholar 

  45. Hannah, B.P. et al. Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J. Virol. 83, 6825–6836 (2009).

    Article  CAS  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  47. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  48. Fortelle, E.d.L. & Bricogne, G. Maximum-likelyhood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  50. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  51. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  52. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  53. Barton, G.J. Alscript: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  54. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  Google Scholar 

  55. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  56. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

  57. Okuma, K., Nakamura, M., Nakano, S., Niho, Y. & Matsuura, Y. Host range of human T-cell leukemia virus type I analyzed by a cell fusion-dependent reporter gene activation assay. Virology 254, 235–244 (1999).

    Article  CAS  Google Scholar 

  58. Pertel, P.E., Fridberg, A., Parish, M.L. & Spear, P.G. Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology 279, 313–324 (2001).

    Article  CAS  Google Scholar 

  59. Connolly, S.A. et al. Structure-based analysis of the herpes simplex virus glycoprotein D binding site present on herpesvirus entry mediator HveA(HVEM). J. Virol. 76, 10894–10904 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Friedman for making the gHΔ48–gL baculovirus expression construct, M. Shaner for preliminary characterization of the gL(161t) mutant, D. King for MS, A. Héroux for collecting X-ray diffraction data on SeMet-derivative crystals, H. Lou, C. Whitbeck and M. Ponce de Leon for their earlier contributions to this project and S.C. Harrison for helpful discussions and critical reading of the manuscript. This work was funded by the US National Institutes of Health (NIH) grant 1DP20D001996 and by the Pew Scholar Program in Biomedical Sciences (E.E.H.) as well as by the NIH grants AI18289 (G.H.C.), AI056045 (R.J.E.) and AI076231 (R.J.E.). This work is based on research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by award RR-15301 from the National Center for Researcher Resources at NIH. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Contributions

T.K.C., T.M.C. and D.A. performed the experimental work; T.K.C. and E.E.H. performed computational analysis of data; T.K.C., T.M.C., D.A., G.H.C., R.J.E. and E.E.H. interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Ekaterina E Heldwein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 10206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdary, T., Cairns, T., Atanasiu, D. et al. Crystal structure of the conserved herpesvirus fusion regulator complex gH–gL. Nat Struct Mol Biol 17, 882–888 (2010). https://doi.org/10.1038/nsmb.1837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing