Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The C terminus of p53 binds the N-terminal domain of MDM2

A Corrigendum to this article was published on 06 April 2011

This article has been updated

Abstract

The p53 tumor suppressor interacts with its negative regulator Mdm2 via the former's N-terminal region and core domain, yet the extreme p53 C-terminal region contains lysine residues ubiquitinated by Mdm2 and can bear post-translational modifications that inhibit Mdm2-p53 association. We show that the Mdm2-p53 interaction is decreased upon deletion, mutation or acetylation of the p53 C terminus. Mdm2 decreases the association of full-length but not C-terminally deleted p53 with a DNA target sequence in vitro and in cells. Further, using multiple approaches, we show that a peptide from the p53 C terminus directly binds the Mdm2 N terminus in vitro. We also show that p300-acetylated p53 inefficiently binds Mdm2 in vitro, and Nutlin-3 treatment induces C-terminal modification(s) of p53 in cells, explaining the low efficiency of Nutlin-3 in dissociating p53-MDM2 in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contribution of the p53 C terminus to formation of the p53–Mdm2 complex.
Figure 2: Analysis of the binding between the N terminus of Mdm2 and p53 CTD.
Figure 3: Cross-linking and MS experiments implicate the N-terminal portion of Mdm2 in binding to the p53 CTD.
Figure 4: The p53 C terminus is required for Mdm2 to inhibit p53 DNA binding in vitro and in cells.
Figure 5: Nutlin-3 inhibits Mdm2–p53 complex formation and leads to modification of the p53 C terminus.
Figure 6: Nutlin-3, p14ARF and Mdm2 siRNA induce C-terminal modifications of p53.
Figure 7: Proposed mechanism for the function of the p53 C terminus and its modifications in Mdm2 complex formation.

Similar content being viewed by others

Change history

  • 25 July 2010

    In the version of this article initially published online, the Acknowledgments section was incomplete. The error has been corrected for the print, PDF and HTML versions of this article.

  • 21 September 2010

    In the version of this article initially published, the error bars in figures 1, 2, 4 and 5 were not defined, and a formatting mistake occurred in Supplementary Figure 1a. The errors have been corrected in the PDF and HTML versions of this article.

References

  1. Vousden, K.H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  Google Scholar 

  2. Barak, Y., Gottlieb, E., Juven-Gershon, T. & Oren, M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 8, 1739–1749 (1994).

    Article  CAS  Google Scholar 

  3. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  Google Scholar 

  4. Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  5. Kussie, P.H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  Google Scholar 

  6. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  7. Klein, C. & Vassilev, L.T. Targeting the p53–MDM2 interaction to treat cancer. Br. J. Cancer 91, 1415–1419 (2004).

    Article  CAS  Google Scholar 

  8. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10, 1321–1328 (2004).

    Article  CAS  Google Scholar 

  9. Shieh, S.Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    Article  CAS  Google Scholar 

  10. Appella, E. & Anderson, C.W. Signaling to p53: breaking the posttranslational modification code. Pathol. Biol. (Paris) 48, 227–245 (2000).

    CAS  Google Scholar 

  11. Kane, S.A. et al. Development of a binding assay for p53/HDM2 by using homogeneous time-resolved fluorescence. Anal. Biochem. 278, 29–38 (2000).

    Article  CAS  Google Scholar 

  12. Sakaguchi, K. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem. 275, 9278–9283 (2000).

    Article  CAS  Google Scholar 

  13. Lai, Z., Auger, K.R., Manubay, C.M. & Copeland, R.A. Thermodynamics of p53 binding to hdm2(1–126): effects of phosphorylation and p53 peptide length. Arch. Biochem. Biophys. 381, 278–284 (2000).

    Article  CAS  Google Scholar 

  14. Shimizu, H. et al. The conformationally flexible S9–S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J. Biol. Chem. 277, 28446–28458 (2002).

    Article  CAS  Google Scholar 

  15. Wallace, M., Worrall, E., Pettersson, S., Hupp, T.R. & Ball, K.L. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol. Cell 23, 251–263 (2006).

    Article  CAS  Google Scholar 

  16. Yu, G.W. et al. The central region of HDM2 provides a second binding site for p53. Proc. Natl. Acad. Sci. USA 103, 1227–1232 (2006).

    Article  CAS  Google Scholar 

  17. Ma, J. et al. A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination. Biochemistry 45, 9238–9245 (2006).

    Article  CAS  Google Scholar 

  18. Rodriguez, M.S., Desterro, J.M., Lain, S., Lane, D.P. & Hay, R.T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 20, 8458–8467 (2000).

    Article  CAS  Google Scholar 

  19. Carter, S. & Vousden, K.H. Modifications of p53: competing for the lysines. Curr. Opin. Genet. Dev. 19, 18–24 (2009).

    Article  CAS  Google Scholar 

  20. Carter, S., Bischof, O., Dejean, A. & Vousden, K.H. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat. Cell Biol. 9, 428–435 (2007).

    Article  CAS  Google Scholar 

  21. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    Article  CAS  Google Scholar 

  22. Tang, Y., Zhao, W., Chen, Y., Zhao, Y. & Gu, W. Acetylation is indispensable for p53 activation. Cell 133, 612–626 (2008).

    Article  CAS  Google Scholar 

  23. Le Cam, L. et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127, 775–788 (2006).

    Article  CAS  Google Scholar 

  24. Hainaut, P. et al. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 26, 205–213 (1998).

    Article  CAS  Google Scholar 

  25. Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  CAS  Google Scholar 

  26. Sutherland, B.W., Toews, J. & Kast, J. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. J. Mass Spectrom. 43, 699–715 (2008).

    Article  CAS  Google Scholar 

  27. Ahn, J. & Prives, C. The C-terminus of p53: the more you learn the less you know. Nat. Struct. Biol. 8, 730–732 (2001).

    Article  CAS  Google Scholar 

  28. Cain, C., Miller, S., Ahn, J. & Prives, C. The N terminus of p53 regulates its dissociation from DNA. J. Biol. Chem. 275, 39944–39953 (2000).

    Article  CAS  Google Scholar 

  29. Poyurovsky, M.V. et al. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26, 90–101 (2007).

    Article  CAS  Google Scholar 

  30. McKinney, K., Mattia, M., Gottifredi, V. & Prives, C. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 16, 413–424 (2004).

    Article  CAS  Google Scholar 

  31. Schon, O., Friedler, A., Bycroft, M., Freund, S.M. & Fersht, A.R. Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol. 323, 491–501 (2002).

    Article  CAS  Google Scholar 

  32. Showalter, S.A., Bruschweiler-Li, L., Johnson, E., Zhang, F. & Bruschweiler, R. Quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft. J. Am. Chem. Soc. 130, 6472–6478 (2008).

    Article  CAS  Google Scholar 

  33. Ding, K. et al. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc. 127, 10130–10131 (2005).

    Article  CAS  Google Scholar 

  34. Garcia-Echeverria, C., Chene, P., Blommers, M.J. & Furet, P. Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J. Med. Chem. 43, 3205–3208 (2000).

    Article  CAS  Google Scholar 

  35. Duncan, S.J., Cooper, M.A. & Williams, D.H. Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chem. Commun. (Camb.) 316–317 (2003).

  36. Bottger, V. et al. Identification of novel mdm2 binding peptides by phage display. Oncogene 13, 2141–2147 (1996).

    CAS  PubMed  Google Scholar 

  37. Vassilev, L.T. Small-molecule antagonists of p53–MDM2 binding: research tools and potential therapeutics. Cell Cycle 3, 419–421 (2004).

    Article  CAS  Google Scholar 

  38. Thompson, T. et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J. Biol. Chem. 279, 53015–53022 (2004).

    Article  CAS  Google Scholar 

  39. Ohkubo, S., Tanaka, T., Taya, Y., Kitazato, K. & Prives, C. Excess HDM2 impacts cell cycle and apoptosis and has a selective effect on p53-dependent transcription. J. Biol. Chem. 281, 16943–16950 (2006).

    Article  CAS  Google Scholar 

  40. de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  Google Scholar 

  41. Stott, F.J. et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).

    Article  CAS  Google Scholar 

  42. Hay, T.J. & Meek, D.W. Multiple sites of in vivo phosphorylation in the MDM2 oncoprotein cluster within two important functional domains. FEBS Lett. 478, 183–186 (2000).

    Article  CAS  Google Scholar 

  43. Blattner, C., Hay, T., Meek, D.W. & Lane, D.P. Hypophosphorylation of Mdm2 augments p53 stability. Mol. Cell. Biol. 22, 6170–6182 (2002).

    Article  CAS  Google Scholar 

  44. McCoy, M.A., Gesell, J.J., Senior, M.M. & Wyss, D.F. Flexible lid to the p53-binding domain of human Mdm2: implications for p53 regulation. Proc. Natl. Acad. Sci. USA 100, 1645–1648 (2003).

    Article  CAS  Google Scholar 

  45. Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340 (2001).

    Article  CAS  Google Scholar 

  46. Kobet, E., Zeng, X., Zhu, Y., Keller, D. & Lu, H. MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc. Natl. Acad. Sci. USA 97, 12547–12552 (2000).

    Article  CAS  Google Scholar 

  47. Wahl, G.M. Mouse bites dogma: how mouse models are changing our views of how P53 is regulated in vivo. Cell Death Differ. 13, 973–983 (2006).

    Article  CAS  Google Scholar 

  48. Feng, H. et al. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17, 202–210 (2009).

    Article  CAS  Google Scholar 

  49. Jenkins, L.M. et al. Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Biochemistry 48, 1244–1255 (2009).

    Article  Google Scholar 

  50. Gorgoulis, V.G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    Article  CAS  Google Scholar 

  51. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  Google Scholar 

  52. Lokshin, M., Li, Y., Gaiddon, C. & Prives, C. p53 and p73 display common and distinct requirements for sequence specific binding to DNA. Nucleic Acids Res. 35, 340–352 (2007).

    Article  CAS  Google Scholar 

  53. Zhang, T. & Prives, C. Cyclin a-CDK phosphorylation regulates MDM2 protein interactions. J. Biol. Chem. 276, 29702–29710 (2001).

    Article  CAS  Google Scholar 

  54. Rotem, S. et al. The structure and interactions of the proline-rich domain of ASPP2. J. Biol. Chem. 283, 18990–18999 (2008).

    Article  CAS  Google Scholar 

  55. Cardinale, C.J. et al. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320, 935–938 (2008).

    Article  CAS  Google Scholar 

  56. Beckerman, R. et al. A role for Chk1 in blocking transcriptional elongation of p21 RNA during the S-phase checkpoint. Genes Dev. 23, 1364–1377 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are exceedingly grateful to E. Freulich for her expert technical assistance and members of the Prives laboratory for their helpful suggestions. This work was supported by grant CA58316 from the US National Institutes of Health to C.P. A.F. is supported by a starting grant from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement n° 203413.

Author information

Authors and Affiliations

Authors

Contributions

M.V.P., A.F. and C.P. designed research; M.V.P., C.K., O.L., M.L., J.A., I.-J.L.B., R.G., M.M., A.Z. and L.M.B. performed research and analyzed data; M.V.P. and C.P. wrote the manuscript.

Corresponding author

Correspondence to Carol Prives.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 3837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poyurovsky, M., Katz, C., Laptenko, O. et al. The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol 17, 982–989 (2010). https://doi.org/10.1038/nsmb.1872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing