Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kin28 regulates the transient association of Mediator with core promoters

Abstract

Mediator is an essential, broadly used eukaryotic transcriptional coactivator. How and what Mediator communicates from activators to RNA polymerase II (RNAPII) remains an open question. Here we performed genome-wide location profiling of Saccharomyces cerevisiae Mediator subunits. Mediator is not found at core promoters but rather occupies the upstream activating sequence, upstream of the pre-initiation complex. In the absence of Kin28 (CDK7) kinase activity or in cells in which the RNAPII C-terminal domain is mutated to replace Ser5 with alanine, however, Mediator accumulates at core promoters together with RNAPII. We propose that Mediator is released quickly from promoters after phosphorylation of Ser5 by Kin28 (CDK7), which also allows for RNAPII to escape from the promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mediator occupies the UAS.
Figure 2: Mediator is involved in PIC assembly in vivo.
Figure 3: Mediator accumulates at core promoters in the absence of Kin28 kinase activity (Supplementary Fig. 3).
Figure 4: The CAND system to study CTD function in vivo.
Figure 5: Mediator occupancy shifts toward core promoters in the absence of CTD Ser5 phosphorylation.
Figure 6: A schematic representation of the dynamic association of Mediator with yeast genes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Näär, A.M., Lemon, B.D. & Tjian, R. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475–501 (2001).

    PubMed  Google Scholar 

  2. Poss, Z.C., Ebmeier, C.C. & Taatjes, D.J. The Mediator complex and transcription regulation. Crit. Rev. Biochem. Mol. Biol. 48, 575–608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ansari, S.A. & Morse, R.H. Mechanisms of Mediator complex action in transcriptional activation. Cell. Mol. Life Sci. 70, 2743–2756 (2013).

    CAS  PubMed  Google Scholar 

  4. Carlsten, J.O., Zhu, X. & Gustafsson, C.M. The multitalented Mediator complex. Trends Biochem. Sci. 38, 531–537 (2013).

    CAS  PubMed  Google Scholar 

  5. Myers, L.C. et al. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 12, 45–54 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Spahr, H. et al. Mediator influences Schizosaccharomyces pombe RNA polymerase II–dependent transcription in vitro. J. Biol. Chem. 278, 51301–51306 (2003).

    CAS  PubMed  Google Scholar 

  7. Knuesel, M.T., Meyer, K.D., Bernecky, C. & Taatjes, D.J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Näär, A.M., Taatjes, D.J., Zhai, W., Nogales, E. & Tjian, R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 16, 1339–1344 (2002).

    PubMed  PubMed Central  Google Scholar 

  9. Andrau, J.-C. et al. Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol. Cell 22, 179–192 (2006).

    CAS  PubMed  Google Scholar 

  10. Zhu, X. et al. Genome-wide occupancy profile of mediator and the Srb8–11 module reveals interactions with coding regions. Mol. Cell 22, 169–178 (2006).

    CAS  PubMed  Google Scholar 

  11. Conaway, R.C. & Conaway, J.W. The Mediator complex and transcription elongation. Biochim. Biophys. Acta 1829, 69–75 (2013).

    CAS  PubMed  Google Scholar 

  12. Kuras, L. & Struhl, K. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399, 609–613 (1999).

    CAS  PubMed  Google Scholar 

  13. Cantin, G.T., Stevens, J.L. & Berk, A.J. Activation domain–mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc. Natl. Acad. Sci. USA 100, 12003–12008 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhaumik, S.R., Raha, T., Aiello, D.P. & Green, M.R. In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev. 18, 333–343 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, G. et al. Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol. Cell 17, 683–694 (2005).

    CAS  PubMed  Google Scholar 

  16. Baek, H.J., Kang, Y.K. & Roeder, R.G. Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J. Biol. Chem. 281, 15172–15181 (2006).

    CAS  PubMed  Google Scholar 

  17. He, Q., Battistella, L. & Morse, R.H. Mediator requirement downstream of chromatin remodeling during transcriptional activation of CHA1 in yeast. J. Biol. Chem. 283, 5276–5286 (2008).

    CAS  PubMed  Google Scholar 

  18. Rana, R., Surapureddi, S., Kam, W., Ferguson, S. & Goldstein, J.A. Med25 is required for RNA polymerase II recruitment to specific promoters, thus regulating xenobiotic and lipid metabolism in human liver. Mol. Cell. Biol. 31, 466–481 (2011).

    CAS  PubMed  Google Scholar 

  19. Lin, J.J. et al. Mediator coordinates PIC assembly with recruitment of CHD1. Genes Dev. 25, 2198–2209 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, X.F. et al. Mediator and SAGA have distinct roles in Pol II preinitiation complex assembly and function. Cell Reports 2, 1061–1067 (2012).

    CAS  PubMed  Google Scholar 

  21. Takahashi, H. et al. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146, 92–104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Galbraith, M.D. et al. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 153, 1327–1339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mukundan, B. & Ansari, A. Novel role for mediator complex subunit Srb5/Med18 in termination of transcription. J. Biol. Chem. 286, 37053–37057 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mukundan, B. & Ansari, A. Srb5/Med18-mediated termination of transcription is dependent on gene looping. J. Biol. Chem. 288, 11384–11394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, Y. et al. Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol. Cell 45, 459–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan, X., Chou, D.M. & Struhl, K. Activator-specific recruitment of Mediator in vivo. Nat. Struct. Mol. Biol. 13, 117–120 (2006).

    CAS  PubMed  Google Scholar 

  27. Fan, X. & Struhl, K. Where does mediator bind in vivo? PLoS ONE 4, e5029 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Ansari, S.A., He, Q. & Morse, R.H. Mediator complex association with constitutively transcribed genes in yeast. Proc. Natl. Acad. Sci. USA 106, 16734–16739 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Strässer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).

    PubMed  Google Scholar 

  30. Teytelman, L., Thurtle, D.M., Rine, J. & van Oudenaarden, A. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. USA 110, 18602–18607 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, D., Lee, Y., Bhupindersingh, G. & Iyer, V.R. Widespread misinterpretable ChIP-seq bias in yeast. PLoS ONE 8, e83506 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Drouin, S. et al. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet. 6, e1001173 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Soontorngun, N. et al. Genome-wide location analysis reveals an important overlap between the targets of the yeast transcriptional regulators Rds2 and Adr1. Biochem. Biophys. Res. Commun. 423, 632–637 (2012).

    CAS  PubMed  Google Scholar 

  34. Liesen, T., Hollenberg, C.P. & Heinisch, J.J. ERA, a novel cis-acting element required for autoregulation and ethanol repression of PDC1 transcription in Saccharomyces cerevisiae. Mol. Microbiol. 21, 621–632 (1996).

    CAS  PubMed  Google Scholar 

  35. Donner, A.J., Ebmeier, C.C., Taatjes, D.J. & Espinosa, J.M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 17, 194–201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Loewith, R. & Hall, M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177–1201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Haruki, H., Nishikawa, J. & Laemmli, U.K. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932 (2008).

    CAS  PubMed  Google Scholar 

  38. Nonet, M.L. & Young, R.A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA Polymerase II. Genetics 123, 715–724 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Thompson, C.M., Koleske, A.J., Chao, D.M. & Young, R.A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361–1375 (1993).

    CAS  PubMed  Google Scholar 

  40. Søgaard, T.M. & Svejstrup, J.Q. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 282, 14113–14120 (2007).

    PubMed  Google Scholar 

  41. Liu, Y. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol. 24, 1721–1735 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, Y.J., Bjorklund, S., Li, Y., Sayre, M.H. & Kornberg, R.D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    CAS  PubMed  Google Scholar 

  43. Rhee, H.S. & Pugh, B.F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295–301 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bataille, A.R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158–170 (2012).

    CAS  PubMed  Google Scholar 

  45. Kim, H. et al. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279–1286 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tietjen, J.R. et al. Chemical-genomic dissection of the CTD code. Nat. Struct. Mol. Biol. 17, 1154–1161 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Guidi, B.W. et al. Mutual targeting of mediator and the TFIIH kinase Kin28. J. Biol. Chem. 279, 29114–29120 (2004).

    CAS  PubMed  Google Scholar 

  48. Jeronimo, C., Bataille, A.R. & Robert, F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem. Rev. 113, 8491–8522 (2013).

    CAS  PubMed  Google Scholar 

  49. McCracken, S. et al. 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11, 3306–3318 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fong, N., Bird, G., Vigneron, M. & Bentley, D.L. A 10 residue motif at the C-terminus of the RNA pol II CTD is required for transcription, splicing and 3′ end processing. EMBO J. 22, 4274–4282 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hsin, J.P., Sheth, A. & Manley, J.L. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 334, 683–686 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Thompson, C.M. & Young, R.A. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92, 4587–4590 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Holstege, F.C.P. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    CAS  PubMed  Google Scholar 

  54. Takagi, Y. & Kornberg, R.D. Mediator as a general transcription factor. J. Biol. Chem. 281, 80–89 (2006).

    CAS  PubMed  Google Scholar 

  55. Kagey, M.H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  Google Scholar 

  59. Svejstrup, J.Q. et al. Evidence for a mediator cycle at the initiation of transcription. Proc. Natl. Acad. Sci. USA 94, 6075–6078 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Robinson, P.J., Bushnell, D.A., Trnka, M.J., Burlingame, A.L. & Kornberg, R.D. Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 109, 17931–17935 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Koleske, A.J. & Young, R.A. An RNA polymerase II holoenzyme responsive to activators. Nature 368, 466–469 (1994).

    CAS  PubMed  Google Scholar 

  62. Liao, S.M. et al. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374, 193–196 (1995).

    CAS  PubMed  Google Scholar 

  63. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    CAS  PubMed  Google Scholar 

  64. Guillemette, B. et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 3, e384 (2005).

    PubMed  PubMed Central  Google Scholar 

  65. Szilard, R.K. et al. Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX. Nat. Struct. Mol. Biol. 17, 299–305 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rufiange, A., Jacques, P.-É., Bhat, W., Robert, F. & Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405 (2007).

    CAS  PubMed  Google Scholar 

  67. Hardy, S. et al. The euchromatic and heterochromatic landscapes are shaped by antagonizing effects of transcription on H2A.Z deposition. PLoS Genet. 5, e1000687 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Struhl (Harvard Medical School) for discussing unpublished data and P. Collin (Robert laboratory) for assistance with the CTD mutant constructs, as well as R. Young (Whitehead Institute for Biomedical Research), S. Hahn (Fred Hutchinson Cancer Research Center) and L. Myers (Dartmouth-Hitchcock Medical Center) for sharing strains and antibodies. We are also grateful to C. Kaplan and N. Francis for their critical reading of the manuscript. This work was funded by a Canadian Institutes of Health Research grant (MOP-82891) to F.R.

Author information

Authors and Affiliations

Authors

Contributions

C.J. and F.R. designed the project and wrote the manuscript. C.J. performed most of the experiments. F.R. performed most of the analyses.

Corresponding author

Correspondence to François Robert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Enrichment in highly transcribed coding regions is often observed in ChIP experiments and has to be controlled for.

(a) Enrichment of various Mediator subunits at the highly transcribed PMA1 gene as determined by ChIP-chip using a panel of rabbit polyclonal antibodies (green), as well as using a control IgG antibody (black). All ChIPs were hybridized (and therefore normalized) against input DNA. (b) A scatter plot of the enrichment over coding regions in a control IgG ChIP and an Rpb3 ChIP. (c) Enrichment of various Mediator subunits as determined by ChIP-chip using epitope (Myc)-tagged Mediator subunits (green). Except for the last trace, all ChIPs were hybridized (and therefore normalized) against input DNA as in a. The last profile, however, shows an experiment were the MED15-Myc ChIP sample was hybridized (and therefore normalized) against a control ChIP sample performed using the same anti-Myc antibody but from an isogenic non-tagged strain. (d) TFIIB enrichment as determined by ChIP-chip using a rabbit polyclonal anti-TFIIB antibody (purple) as well as using a control IgG antibody (black) as in a. The middle panel shows TFIIB enrichment after subtracting the signal from the control (black) experiment. Overall, these experiments show that ChIP experiments tend to enrich highly transcribed coding regions regardless of the antibody used. It also shows that most of this systematic error can be removed either by normalizing against controls ChIPs performed in a non-tagged strain (in the case where a tagged protein is tested) or against a control ChIP performed using IgG (when a polyclonal antibody is used). Because each antibody varies with regards to the amount of noise it generates, we favor, when possible, using the "tagged versus non-tagged" strategy.

Supplementary Figure 2 A complement to Figure 1.

(a) A heat map representation of the data from Figure 1a. Genes were sorted by decreasing Rpb3 occupancy and the data were aligned on the TSS. (b) The average TFIIB (purple), RNAPII (Rpb3, red) and Mediator (Gal11, green) occupancies are shown around the TSS of RP genes. (c) Same as in b but for a group of control genes chosen based on the fact that they exhibit similar transcription rates as the RP genes from b. (d) A heat map representation of Mediator (Gal11) occupancy over the same genes as in b and c.

Supplementary Figure 3 A complement to Figure 3.

(a-c) Average Mediator (Gal11, green) occupancy in wild type (WT, solid traces) and the indicated CTD kinase mutants (dotted and dashed traces) around the TSS of all genes with an Rpb3 average ORF occupancy >1 in WT cells. TFIIB (purple) from WT cells is shown as a place-holder for core promoters. Data are shown for kin28-as mutant treated with NAPP1 (n=266) (a), ctk1Δ and bur2Δ mutants (n=299) (b) and srb10Δ mutant (n=295) (c). (d) Average Mediator (Gal11, green) and RNAPII (Rpb3, red) occupancy in wild type (WT, solid traces) and kin28-as mutant (kin28-as, dotted traces) cells, both treated with NAPP1, around the TSS for groups of genes with different RNAPII occupancies. The genes were grouped based on the average Rpb3 enrichment (log2 ratio) over their ORF (>1.5, Very high n=142; 1-1.5, High n=135; 0.5-1, Medium n=337; 0-0.5, Low n=827; <0, Very low n=1764).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 998 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeronimo, C., Robert, F. Kin28 regulates the transient association of Mediator with core promoters. Nat Struct Mol Biol 21, 449–455 (2014). https://doi.org/10.1038/nsmb.2810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing