Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid

Abstract

Isoniazid is a key drug used in the treatment of tuberculosis. Isoniazid is a pro-drug, which, after activation by the katG-encoded catalase peroxidase, reacts nonenzymatically with NAD+ and NADP+ to generate several isonicotinoyl adducts of these pyridine nucleotides. One of these, the acyclic 4S isomer of isoniazid-NAD, targets the inhA-encoded enoyl-ACP reductase, an enzyme essential for mycolic acid biosynthesis in Mycobacterium tuberculosis. Here we show that the acyclic 4R isomer of isoniazid-NADP inhibits the M. tuberculosis dihydrofolate reductase (DHFR), an enzyme essential for nucleic acid synthesis. This biologically relevant form of the isoniazid adduct is a subnanomolar bisubstrate inhibitor of M. tuberculosis DHFR. Expression of M. tuberculosis DHFR in Mycobacterium smegmatis mc2155 protects cells against growth inhibition by isoniazid by sequestering the drug. Thus, M. tuberculosis DHFR is the first new target for isoniazid identified in the last decade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of the mixture of isoniazid-NAD or isoniazid-NADP adducts.
Figure 2: Subnanomolar inhibition of M.tuberculosis DHFR by the bisubstrate analog, isoniazid-NADP.
Figure 3: Crystal structure of M.tuberculosis DHFR complexed with isoniazid-NADP.
Figure 4: Expression of M.tuberculosis DHFR in M. smegmatis mc2155 confers a two-fold increase in resistance to isoniazid.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bloom, B.R. & Murray, C.J. Tuberculosis: commentary on a reemergent killer. Science 257, 1055–1064 (1992).

    Article  CAS  Google Scholar 

  2. Bernstein, J., Lott, W.A., Steinberg, B.A. & Yale, H.L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am. Rev. Tuberc. 65, 357–364 (1952).

    CAS  PubMed  Google Scholar 

  3. Youatt, J. A review of the action of isoniazid. Am. Rev. Respir. Dis. 99, 729–749 (1969).

    CAS  PubMed  Google Scholar 

  4. Middlebrook, G. Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am. Rev. Tuberc. 65, 765–767 (1952).

    CAS  PubMed  Google Scholar 

  5. Zhang, Y., Heym, B., Allen, B., Young, D. & Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 591–593 (1992).

    Article  CAS  Google Scholar 

  6. Zhao, X. The catalytic mechanism of Mycobacterium tuberculosis catalase-peroxidase (katG) and isoniazid activation. PhD thesis. The Graduate Center, City University of New York, Brooklyn, New York, (2005).

  7. Nguyen, M., Claparols, C., Bernadou, J. & Meunier, B. A fast and efficient metal-mediated oxidation of isoniazid and identification of isoniazid-NAD(H) adducts. ChemBioChem 2, 877–883 (2001).

    Article  CAS  Google Scholar 

  8. Rozwarski, D.A., Grant, G.A., Barton, D.H., Jacobs, W.R., Jr. & Sacchettini, J.C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279, 98–102 (1998).

    Article  CAS  Google Scholar 

  9. White, S.W., Zheng, J., Zhang, Y.M. & Rock, C.O. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831 (2004).

    Article  Google Scholar 

  10. Barry, C.E., III. et al. Mycolic acids: structure, biosynthesis and physiological functions. Prog. Lipid Res. 37, 143–179 (1998).

    Article  CAS  Google Scholar 

  11. Takayama, K., Wang, C. & Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18, 81–101 (2005).

    Article  CAS  Google Scholar 

  12. Lei, B., Wei, C.J. & Tu, S.C. Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of InhA inhibitor. J. Biol. Chem. 275, 2520–2526 (2000).

    Article  CAS  Google Scholar 

  13. Rawat, R., Whitty, A. & Tonge, P.J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc. Natl. Acad. Sci. USA 100, 13881–13886 (2003).

    Article  CAS  Google Scholar 

  14. Zhang, Y., Vilcheze, C. & Jacobs, W.R., Jr. Mechanisms of drug resistance in Mycobacterium tuberculosis. in Tuberculosis and the Tubercle Bacillus (eds. Cole, S.T., Eisenach, K.D., McMurray, D.N. & Jacobs, W.R., Jr.) 115–140 (ASM Press, Washington, DC, 2005).

    Google Scholar 

  15. Basso, L.A., Zheng, R., Musser, J.M., Jacobs, W.R., Jr. & Blanchard, J.S. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J. Infect. Dis. 178, 769–775 (1998).

    Article  CAS  Google Scholar 

  16. Ducasse-Cabanot, S. et al. In vitro inhibition of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA by isoniazid. Antimicrob. Agents Chemother. 48, 242–249 (2004).

    Article  CAS  Google Scholar 

  17. Gangadharam, P.R., Harold, F.M. & Schaefer, W.B. Selective inhibition of nucleic acid synthesis in Mycobacterium tuberculosis by isoniazid. Nature 198, 712–714 (1963).

    Article  CAS  Google Scholar 

  18. Miller, G.P. & Benkovic, S.J. Stretching exercises—flexibility in dihydrofolate reductase catalysis. Chem. Biol. 5, R105–R113 (1998).

    Article  CAS  Google Scholar 

  19. Schnell, J.R., Dyson, H.J. & Wright, P.E. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev. Biophys. Biomol. Struct. 33, 119–140 (2004).

    Article  CAS  Google Scholar 

  20. Suling, W.J. et al. Susceptibilities of Mycobacterium tuberculosis and Mycobacterium avium complex to lipophilic deazapteridine derivatives, inhibitors of dihydrofolate reductase. J. Antimicrob. Chemother. 42, 811–815 (1998).

    Article  CAS  Google Scholar 

  21. Li, R. et al. Three-dimensional structure of Mycobacterium tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. J. Mol. Biol. 295, 307–323 (2000).

    Article  CAS  Google Scholar 

  22. Daugelat, S. et al. The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes Infect. 5, 1082–1095 (2003).

    Article  CAS  Google Scholar 

  23. Banerjee, A. et al. InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    Article  CAS  Google Scholar 

  24. Alland, D. et al. Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): the effect of isoniazid on gene expression in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 95, 13227–13232 (1998).

    Article  CAS  Google Scholar 

  25. Wilson, M. et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96, 12833–12838 (1999).

    Article  CAS  Google Scholar 

  26. Betts, J.C. et al. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47, 2903–2913 (2003).

    Article  CAS  Google Scholar 

  27. Boshoff, H.I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184 (2004).

    Article  CAS  Google Scholar 

  28. Waddell, S.J. et al. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb.) 84, 263–274 (2004).

    Article  Google Scholar 

  29. Hughes, M.A., Silva, J.C., Geromanos, S.J. & Townsend, C.A. Quantitative proteomic analysis of drug-induced changes in mycobacteria. J. Proteome Res. 5, 54–63 (2006).

    Article  CAS  Google Scholar 

  30. Wilming, M. & Johnsson, K. Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid. Angew. Chem. Int. Edn Engl. 38, 2588–2590 (1999).

    Article  CAS  Google Scholar 

  31. Quemard, A. et al. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34, 8235–8241 (1995).

    Article  CAS  Google Scholar 

  32. Sawaya, M.R. & Kraut, J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586–603 (1997).

    Article  CAS  Google Scholar 

  33. Cody, V., Luft, J.R., Pangborn, W. & Gangjee, A. Analysis of three crystal structure determinations of a 5-methyl-6-N-methylanilino pyridopyrimidine antifolate complex with human dihydrofolate reductase. Acta Crystallogr. D59, 1603–1609 (2003).

    CAS  Google Scholar 

  34. Kongsaeree, P. et al. Crystal structure of dihydrofolate reductase from Plasmodium vivax: pyrimethamine displacement linked with mutation-induced resistance. Proc. Natl. Acad. Sci. USA 102, 13046–13051 (2005).

    Article  CAS  Google Scholar 

  35. Vilcheze, C. et al. Inactivation of the InhA-encoded fatty acid synthase II (FAS II) enoyl-acyl carrier protein reductase induces accumulation of the FAS I end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol. 182, 4059–4067 (2000).

    Article  CAS  Google Scholar 

  36. Stone, S.R. & Morrison, J.F. Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli. Biochemistry 21, 3757–3765 (1982).

    Article  CAS  Google Scholar 

  37. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  38. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255 (1997).

    CAS  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004).

    CAS  Google Scholar 

  40. Brunger, A.T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. D49, 24–36 (1993).

    CAS  Google Scholar 

  41. Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D60, 1355–1363 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank W.R. Jacobs, Jr. (Albert Einstein College of Medicine) for providing plasmid pSD26 and valuable discussions, A. Bhatt for assistance with the MIC experiments and P.F. Cook for valuable discussions concerning bisubstrate inhibitors. This work was supported by a US National Institutes of Health grant to J.S.B. (AI33696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S Blanchard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Crystal structures of dihydrofolate reductase from various organisms. (PDF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyrou, A., Vetting, M., Aladegbami, B. et al. Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid. Nat Struct Mol Biol 13, 408–413 (2006). https://doi.org/10.1038/nsmb1089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing