Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Human papillomaviruses, cervical cancer and cell polarity

Abstract

Human papillomaviruses (HPVs) are the causative agents of a number of human cancers, of which cervical cancer is the most important. This occurs following persistent infection with a limited number of viral subtypes and is characterized by continued expression of the viral E6 and E7 oncoproteins. A unique characteristic of the cancer-causing HPV types is the presence of a PDZ recognition motif on the carboxy terminus of the E6 oncoprotein. Through this motif, E6 directs the proteasome-mediated degradation of cellular proteins involved in the regulation of cell polarity and in cell proliferation control. These include components of the Scrib and Par polarity complexes, as well as a number of other PDZ domain-containing substrates. Thus, PVs are now providing novel insights into the functioning of many of these cellular proteins, and into which of these functions, in particular, are relevant for maintaining normal cellular homeostasis. In this review, we discuss the biological consequences of papillomaviral targeting of these cell polarity regulators, both with respect to the viral life cycle and, most importantly, to the development of HPV-induced malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adey N, Huang L, Ormonde P, Baumgard M, Pero R, Byreddy D et al. (2000). Threonine phosphorylation of the MMAC1/PTEN PDZ binding domain both inhibits and stimulates PDZ binding. Cancer Res 60: 35–37.

    CAS  PubMed  Google Scholar 

  • Alvarez-Salas LM, Cullinan A, Siwkowski A, Hampel A, DiPaolo JA . (1998). Inhibition of HPV-16 E6/E7 immortalisation of normal keratinocytes by hairpin ribozymes. Proc Natl Acad Sci USA 95: 1189–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Androphy EJ, Hubbert NL, Schiller JT, Lowy DR . (1987). Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO J 6: 989–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda V, Nolan ME, Muthuswamy SK . (2008). Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 27: 6878–6887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbeit JM, Münger K, Howley P, Hanahan D . (1994). Progressive squamous epithelial neoplasia in K-14 human papillomavirus type -16 transgenic mice. J Virol 68: 4358–4368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks L, Spence P, Androphy E, Hubbert N, Matlashewski G, Murray A et al. (1987). Identification of human papillomavirus type 18 E6 polypeptide in cells derived from human cervical carcinomas. J Gen Virol 68: 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa M, Schlegel R . (1989). The E6 and E7 genes of HPV-18 are sufficient for inducing two-stage in vitro transformation of human keratinocytes. Oncogene 4: 1529–1532.

    CAS  PubMed  Google Scholar 

  • Becamel C, Figge A, Poliak S, Dumuis A, Peles E, Bockaert J et al. (2000). Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein, MUPP1. J Biol Chem 276: 12974–12982.

    Article  Google Scholar 

  • Bilder D, Perrimon N . (2000). Localisation of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403: 676–680.

    Article  CAS  PubMed  Google Scholar 

  • Bilder D, Schober M, Perrimon N . (2003). Integrated activity of PDZ protein complexes regulates epithelial polarity. Nat Cell Biol 5: 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Bilder D . (2004). Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 18: 1909–1925.

    Article  CAS  PubMed  Google Scholar 

  • Blobe GC, Liu X, Fang SJ, How T, Lodish HF . (2001). A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC. J Biol Chem 276: 39608–39617.

    Article  CAS  PubMed  Google Scholar 

  • Bohl J, Brimer N, Lyons C, Vande Pol S . (2007). The stardust family protein MPP7 forms a tripartite complex with LIN7 and Dlg1 that regulates the stability and localization of Dlg1 to cell junctions. J Biol Chem 282: 9392–9400.

    Article  CAS  PubMed  Google Scholar 

  • Brake T, Lambert PF . (2005). Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci USA 102: 2490–2495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F . (2000). Induction of apoptosis in human papillomavirus-positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 97: 6693–6697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . (2003). siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 22: 5938–5945.

    Article  CAS  PubMed  Google Scholar 

  • Cavatorta AL, Fumero G, Chouhy D, Aguirre R, Nocito AL, Giri AA et al. (2004). Differential expression of the human homologue of Drosophila discs large oncosuppressor in histologic samples from human papillomavirus-associated lesions as a marker for progression to malignancy. Int J Cancer 111: 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Cavatorta AL, Giri AA, Banks L, Gardiol D . (2008). Cloning and functional analysis of the promoter region of the human Discs Large gene. Gene; e-pub ahead of print 7 August 2008.

  • Chetkovich D, Chen L, Stocker T, Nicoll R, Bredt D . (2002). Phosphorylation of the postsynaptic density-95 (PSD-95)/Discs Large/Zona Occludens-1 binding site of stargazing regulates binding to PSD-95 and synaptic targeting of AMPA receptors. J Neurosci 22: 5791–5796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comer FI, Parent CA . (2007). Phosphoinositides specify polarity during epithelial organ development. Cell 128: 239–240.

    Article  CAS  PubMed  Google Scholar 

  • Coyne CB, Voelker T, Pichla SL, Bergelson JM . (2004). The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem 279: 48079–48084.

    Article  CAS  PubMed  Google Scholar 

  • de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H . (2004). Classification of papillomaviruses. Virology 324: 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Dobrosotskaya IY, Guy RK, James GL . (1997). MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein–protein interaction domains. J Biol Chem 272: 31589–31597.

    Article  CAS  PubMed  Google Scholar 

  • Dobrosotskaya IY, James GL . (2000). MAGI-1 interacts with beta-catenin and is associated with cell–cell adhesion structures. Biochem Biophys Res Commun 270: 903–909.

    Article  CAS  PubMed  Google Scholar 

  • Dobrosotskaya IY . (2001). Identification of mNET1 as a candidate ligand for the first PDZ domain of MAGI-1. Biochem Biophys Res Commun 283: 969–975.

    Article  CAS  PubMed  Google Scholar 

  • Doorbar J . (2006). Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 110: 525–541.

    Article  CAS  Google Scholar 

  • Dow L, King C, Elsum I, Kinross K, Richardson H, Humbert P . (2008). Loss of human Scribble cooperates with Ha-ras to promote cell invasion through deregulation of MAPK signaling. Oncogene; e-pub ahead of print 21 July 2008.

  • Eckert R, Efimova T, Dashti S, Balasubramanian S, Deucher A, Crish J et al. (2002). Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated protein kinase. J Investig Dermatol Symp Proc 7: 36–40.

    Article  CAS  PubMed  Google Scholar 

  • Efimova T, Broome A-M, Eckert R . (2003). A regulatory role for p38δ MAPK in keratinocyte differentiation. J Biol Chem 278: 34277–34285.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S . (2008). Polarity proteins in migration and invasion. Oncogene 27: 6970–6980.

    Article  CAS  PubMed  Google Scholar 

  • Favre-Bonvin A, Reynaud C, Kretz-Remy C, Jalinot P . (2005). Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome. J Virol 79: 4229–4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng W, Wu H, Chan LN, Zhang M . (2008). Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem 283: 23440–23449.

    Article  CAS  PubMed  Google Scholar 

  • Filippova M, Johnson M, Bautista M, Filippov V, Fodor N, Tungteakkhun S et al. (2007). The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. J Virol 81: 4116–4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firestein BL, Rongo C . (2001). DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol Biol Cell 12: 3465–3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuja TJ, Lin F, Osann KE, Bryant PJ . (2004). Somatic mutations and altered expression of the candidate tumor suppressors CSNK1 epsilon, DLG1, and EDD/hHYD in mammary ductal carcinoma. Cancer Res 64: 942–951.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata R, Dubash A, Sharek L, Carr H, Frost J, Burridge K . (2007). The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol Cell Biol 27: 8683–8697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiol D, Galizzi S, Banks L . (2002). Mutational analysis of the Discs Large tumour suppressor identifies domains responsible for HPV-18 E6 mediated degradation. J Gen Virol 83: 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Gardiol D, Kühne C, Glaunsinger B, Lee SS, Javier R, Banks L . (1999). Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18: 5487–5496.

    Article  CAS  PubMed  Google Scholar 

  • Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L . (2006). Human discs large and Scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 119: 1285–1290.

    Article  CAS  PubMed  Google Scholar 

  • Glaunsinger B, Lee SS, Thomas M, Banks L, Javier R . (2000). Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19: 1093–1098.

    Article  CAS  Google Scholar 

  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S . (2001). Multi PDZ-containing protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule (JAM). J Biol Chem 277: 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Hampson L, Li C, Oliver AW, Kitchener HC, Hampson IN . (2004). The PDZ protein Tip-1 is a gain of function target of the HPV16 E6 oncoprotein. Int J Oncol 25: 1249–1256.

    CAS  PubMed  Google Scholar 

  • Hanada T, Lin L, Chandy KG, Oh SS, Chishti AH . (1997). Human homologue of the Drosophila discs large tumour suppressor binds to p56 lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J Biol Chem 272: 26899–26904.

    Article  CAS  PubMed  Google Scholar 

  • Handa K, Yugawa T, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T . (2007). E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein. J Virol 81: 1379–1389.

    Article  CAS  PubMed  Google Scholar 

  • Hawley-Nelson P, Vousden K, Hubbert N, Lowy D, Schiller J . (1989). HPV-16 E6 and E7 proteins cooperate to immortalise human foreskin keratinocytes. EMBO J 8: 3905–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herber R, Liem A, Pitot H, Lambert PF . (1996). Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J Virol 70: 1873–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi M, Tsubata C, Kondo R, Yoshida S, Takahashi M, Oie M et al. (2007). Cooperation of NF-kappaB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line. J Virol 81: 11900–11907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbert PO, Dow LE, Russell SM . (2006). The Scribble and Par complexes in polarity and migration: friends or foes? Trends Cell Biol 16: 622–630.

    Article  CAS  PubMed  Google Scholar 

  • Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE (2008). Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 27: 6888–6907.

    Article  CAS  PubMed  Google Scholar 

  • Ide N, Hata Y, Nishioka H, Hirao K, Yao I, Deguchi M et al. (1999). Localization of membrane-associated guanylate kinase (MAGI)-1/BAI-associated protein (BAP)1 at tight junctions of epithelial cells. Oncogene 18: 7810–7815.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova I, D'Souza S, Dagnino L . (2006). E2F1 stability is regulated by a novel-PKC/p38β MAP kinase signaling pathway during keratinocyte differentiation. Oncogene 25: 430–437.

    Article  CAS  PubMed  Google Scholar 

  • James MA, Lee JH, Klingelhutz AJ . (2006). Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J Virol 80: 5301–5307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Januschke J, Gonzalez C . (2008). Drosophila asymmetric division, polarity and cancer. Oncogene 27: 6994–7002.

    Article  CAS  PubMed  Google Scholar 

  • Javier RT . (2008). Cell polarity proteins: common targets for tumorigenic human viruses. Oncogene 27: 7031–7046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeansonne B, Lu Q, Goodenough DA, Chen YH . (2003). Claudin-8 interacts with multi-PDZ domain protein 1 (MUPP1) and reduces paracellular conductance in epithelial cells. Cell Mol Biol 49: 13–21.

    CAS  PubMed  Google Scholar 

  • Jeong KW, Kim HZ, Kim S, Kim YS, Choe J . (2007). Human papillomavirus type 16 E6 protein interacts with cystic fibrosis transmembrane regulator-associated ligand and promotes E6-associated protein-mediated ubiquitination and proteasomal degradation. Oncogene 26: 487–499.

    Article  CAS  PubMed  Google Scholar 

  • Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB . (2007). Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol 81: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  • Kimber WA, Trinkle-Mulcahy L, Cheung PC, Deak M, Marsden LJ, Kieloch A et al. (2002). Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 361: 525–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyono T, Hiraiwa A, Ishii S, Takahashi T, Ishibashi M . (1997). Binding of high-risk human papillomavirus E6 oncoproteins to a human homologue of the Drosophila discs large tumour suppressor protein. Proc Natl Acad Sci USA 94: 11612–11616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh YH, Popova E, Thomas U, Griffith LC, Budnik V . (1999). Regulation of DLG localization at synapses by CMKII-dependent phosphorylation. Cell 98: 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E . (2005). Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J 19: 115–117.

    Article  CAS  PubMed  Google Scholar 

  • Kuhne C, Gardiol D, Guarnaccia C, Amenitsch H, Banks L . (2000). Differential regulation of human papillomavirus E6 by protein kinase A: conditional degradation of human discs large protein by oncogenic E6. Oncogene 19: 5884–5891.

    Article  CAS  PubMed  Google Scholar 

  • Lanaspa MA, Almeida NE, Andres-Hernando A, Rivard CJ, Capasso JM, Berl T . (2007). The tight junction protein, MUPP1, is up-regulated by hypertonicity and is important in the osmotic stress response in kidney cells. Proc Natl Acad Sci USA 104: 13672–13677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT . (2005). Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci 118: 4283–4293.

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Laimins LA . (2004). Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J Virol 78: 12366–12377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Glaunsinger B, Mantovani F, Banks L, Javier R . (2000). The multi-PDZ domain protein MUPP1 is a cellular target for both human adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74: 9680–9693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Weiss R, Javier R . (1997). Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homologue of the Drosophila discs large tumour suppressor protein. Proc Natl Acad Sci USA 94: 6670–6675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legouis R, Jaulin-Bastard F, Schott S, Navarro C, Borg J-P, Labouesse M . (2003). Basolateral targeting by leucine-rich repeat domains in epithelial cells. EMBO Rep 4: 1096–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani F, Massimi P, Banks L . (2001). Proteasome-mediated regulation of the hDlg tumour suppressor protein. J Cell Sci 114: 4285–4292.

    Article  CAS  PubMed  Google Scholar 

  • Margolis B, Borg JP . (2005). Apicobasal polarity complexes. J Cell Sci 118: 5157–5159.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V et al. (2007). PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenenesis through Cdc42. Cell 128: 383–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massimi P, Gammoh N, Thomas M, Banks L . (2004). HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 23: 8033–8039.

    Article  CAS  PubMed  Google Scholar 

  • Massimi P, Narayan N, Cuenda A, Banks L . (2006). Phosphorylation of the discs large tumour suppressor protein controls its membrane localisation and enhances its susceptibility to HPV E6-induced degradation. Oncogene 25: 4276–4285.

    Article  CAS  PubMed  Google Scholar 

  • Massimi P, Narayan N, Thomas M, Gammoh N, Strand S, Strand D . (2008). Regulation of the hDlg/hScrib/Hugl-1 tumour suppressor complex. Exp Cell Res (in press).

  • McLaughlin M, Hale R, Ellston D, Gaudet S, Lue R, Viel A . (2002). The distribution and function of alternatively spliced insertions in hDlg. J Biol Chem 277: 6406–6412.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Bueno G, Portillo F, Cano A . (2008). Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27: 6958–6969.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Huibregtse J . (2000). Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6-AP ubiquitin-protein ligase. Mol Cell Biol 20: 8244–8253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Yano T, Nakagawa K, Takizawa S, Suzuki Y, Yasugi T et al. (2004). Analysis of the expression and localisation of a LAP protein, human scribble, in the normal and neoplastic epithelium of uterine cervix. Br J Cancer 90: 194–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan N, Massimi P, Banks L . (2008). CDK phosphorylation of the Discs Large tumour suppressor controls its localization and stability. J Cell Sci (in press).

  • Navarro C, Nola S, Audebert S, Santoni M, Arsanto J, Ginestier C et al. (2005). Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene 24: 4330–4339.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF . (2003). The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6′s induction of epithelial hyperplasia in vivo. J Virol 77: 6957–6964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi M, Sakurai M, Higuchi M, Mori N, Fukushi M, Oie M et al. (2004). Human T-cell leukemia virus type 1 Tax oncoprotein induces and interacts with a multi-PDZ domain protein, MAGI-3. Virology 320: 52–62.

    Article  CAS  PubMed  Google Scholar 

  • Ostrow RS, LaBresh KV, Faras AJ . (1991). Characterization of the complete RhPV 1 genomic sequence and an integration locus from a metastatic tumour. Virology 181: 424–429.

    Article  CAS  PubMed  Google Scholar 

  • Pim D, Banks L . (1999). HPV-18 E6* protein modulates the E6-directed degradation of p53 by binding to full-length HPV-18 E6. Oncogene 18: 7403–7408.

    Article  CAS  PubMed  Google Scholar 

  • Pim D, Massimi P, Banks L . (1997). Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. Oncogene 15: 257–264.

    Article  CAS  PubMed  Google Scholar 

  • Pim D, Thomas M, Javier R, Gardiol D, Banks L . (2000). HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin-ligase. Oncogene 19: 719–725.

    Article  CAS  PubMed  Google Scholar 

  • Plant PJ, Fawcett JP, Lin DC, Holdorf AD, Binns K, Kulkarni S et al. 2003. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 5: 301–308.

    Article  CAS  PubMed  Google Scholar 

  • Reynaud C, Fabre S, Jalinot P . (2000). The PDZ protein TIP-1 interacts with the Rho effector rhotekin and is involved in Rho signaling to the serum response element. J Biol Chem 275: 33962–33968.

    Article  CAS  PubMed  Google Scholar 

  • Riley RR, Duensing S, Brake T, Münger K, Lambert PF, Arbeit JM . (2003). Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63: 4862–4871.

    CAS  PubMed  Google Scholar 

  • Roberts S, Calautti E, Vanderweil S, Nguyen H, Foley A, Baden H et al. (2007). Changes in localization of human discs large (hDlg) during keratinocyte differentiation are associated with expression of alternatively spliced hDlg variants. Exp Cell Res 313: 2521–2530.

    Article  CAS  PubMed  Google Scholar 

  • Sabio G, Arthur J, Kuma Y, Peggie M, Carr J, Murray-Tait V et al. (2005). P38γ regulates the localization of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J 24: 1134–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schäfer SC et al. (2005). Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene Lgl, contributes to progression of colorectal cancer. Oncogene 24: 3100–3109.

    Article  CAS  PubMed  Google Scholar 

  • Shai A, Brake T, Somoza C, Lambert PF . (2007). The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities. Cancer Res 67: 1626–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shai A, Pitot HC, Lambert PF . (2008). p53 loss synergizes with estrogen and papillomaviral oncogenes to induce cervical and breast cancers. Cancer Res 68: 2622–2631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Balajee A, Wang J, Wu H, Eng C, Pandolfi P et al. (2007). Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128: 157–170.

    Article  CAS  PubMed  Google Scholar 

  • Smotkin D, Wettstein F . (1986). Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line, and identification of the E7 protein. Proc Natl Acad Sci USA 83: 4680–4684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Liem A, Miller JA, Lambert PF . (2000). Human papillomavirus type 16 E6 and E7 contribute differently to carcinogenesis. Virology 267: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Song S, Pitot HC, Lambert PF . (1999). The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J Virol 73: 5887–5893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chisti AH et al. (1997). Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275: 73–77.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda T, Mochizuki C, Yamashita T, Watanabe-Kaneko K, Miyagi Y, Shigeri Y et al. (2006). Binding of glutamate receptor delta2 to its scaffold protein, Delphilin, is regulated by PKA. Biochem Biophys Res Commun 350: 748–752.

    Article  CAS  PubMed  Google Scholar 

  • Spanos WC, Geiger J, Anderson ME, Harris GF, Bossler AD, Smith RB et al. (2008a). Deletion of the PDZ motif of HPV16 E6 preventing immortalization and anchorage-independent growth in human tonsil epithelial cells. Head Neck 30: 139–147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spanos WC, Hoover A, Harris GF, Wu S, Strand GL, Anderson ME et al. (2008b). The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol 82: 2493–2500.

    Article  CAS  PubMed  Google Scholar 

  • Steele C, Sacks PG, Adler-Storthz K, Shillitoe EJ . (1992). Effect on cancer cells of plasmids that express antisense RNA of human papillomavirus 18. Cancer Res 52: 4706–4711.

    CAS  PubMed  Google Scholar 

  • Storrs C, Silverstein S . (2007). PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18E6*. J Virol 8: 4080–4090.

    Article  CAS  Google Scholar 

  • Tamguney T, Stokoe D . (2007). New insights into PTEN. J Cell Sci 120: 4071–4079.

    Article  CAS  PubMed  Google Scholar 

  • Tanentzapf G, Tepass U . (2003). Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nat Cell Biol 5: 46–52.

    Article  CAS  PubMed  Google Scholar 

  • Tanos B, Rodriguez-Boulan E . (2008). The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene (this issue).

  • Thomas M, Dasgupta J, Zhang Y, Chen X, Banks L . (2008). Analysis of specificity determinants in the interactions of different HPV E6 proteins with their PDZ domain-containing substrates. Virology 376: 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Glaunsinger B, Pim D, Javier R, Banks L . (2001). HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene 20: 5431–5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L et al. (2002). Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21: 5088–5096.

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Massimi P, Navarro C, Borg JP, Banks L . (2005). The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene 24: 6222–6230.

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Pim D, Banks L . (1999). Role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 18: 7690–7700.

    Article  CAS  PubMed  Google Scholar 

  • Tomaić V, Gardiol D, Massimi P, Ozbun M, Myers M, Banks L (2008). Human and primate tumour viruses use PDZ binding as an evolutionarily conserved mechanism of targeting cell polarity regulators. Oncogene (in press).

  • Töpffer S, Müller-Schiffmann A, Matentzoglu K, Scheffner M, Steger G . (2007). Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. J Gen Virol 88: 2956–2965.

    Article  PubMed  CAS  Google Scholar 

  • Trotman L, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H et al. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128: 141–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullmer C, Schmuck K, Figge A, Lubbert H . (1998). Cloning and characterisation of MUPP1, a novel PDZ domain protein. FEBS Lett 424: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Matsuoka S, Sellers WR, Yanagida T, Ueda M, Devreotes PN . (2006). Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc Natl Acad Sci USA 103: 3633–3638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Knebel Döberitz M, Rittmuller C, zur Hausen H, Dürst M . (1992). Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 antisense RNA. Int J Cancer 51: 831–834.

    Article  Google Scholar 

  • von Stein W, Ramrath A, Grimm A, Müller-Borg M, Wodarz A . (2005). Direct association of Bazooka/PAR3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signalling. Development 132: 1675–1686.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Garcia A, Wu M, Lawson D, Witte O, Wu H . (2006). Pten deletion leads to the expansion of a prostate stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA 103: 1480–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al. (2007). NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128: 129–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson RA, Rollason TP, Reynolds GM, Murray PG, Banks L, Roberts S . (2002). Changes in expression of the human homologue of the Drosophila discs large tumour suppressor protein in high-grade premalignant cervical neoplasias. Carcinogenesis 11: 1791–1796.

    Article  Google Scholar 

  • Watson RA, Thomas M, Banks L, Roberts S . (2003). Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. J Cell Sci 116: 4925–4934.

    Article  CAS  PubMed  Google Scholar 

  • Weiss RS, Javier RT . (1997). A carboxy-terminal region required by the adenovirus type 9 E4 ORF1 oncoprotein for transformation mediates direct binding to cellular polypeptides. J Virol 71: 7873–7880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CE, Chen Z, Cline JM, Miller BE, Burk RD . (2007). Characterization and experimental transmission of an oncogenic papillomavirus in female macaques. J Virol 81: 6339–6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Feng W, Chen J, Chan LN, Huang S, Zhang M . (2007). PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 28: 886–898.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan X-J et al. (2000a). Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing protein, MAGI-2. Proc Natl Acad Sci USA 97: 4233–4238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, Gu Q et al. (2000b). Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI-3, a novel membrane associated guanylate kinase. J Biol Chem 275: 21477–21485.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Horikoshi Y, Izumi N, Suzuki A, Mizuno K, Ohno S . (2006). Lgl mediates apical domain disassembly by suppressing the PAR-3-aPKC-PAR-6 complex to orient apical membrane polarity. J Cell Sci 119: 2107–2118.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Horikoshi Y, Sugiyama Y, Ishiyama C, Suzuki A, Hirose T et al. (2003). Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr Biol 13: 734–743.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz O, Valdez R, Theisen B, Guo W, Ferguson D, Wu H et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441: 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y et al. (2003). In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 8: 762–768.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang D, Sun H, Hall RA, Yun CC . (2007a). MAGI-3 regulates LPA-induced activation of Erk and RhoA. Cell Signal 19: 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Grindley J, Yin T, Jayasinghe S, He X, Ross J et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441: 518–522.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dasgupta J, Ma RZ, Banks L, Thomas M, Chen XS . (2007b). Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein. J Virol 81: 3618–3626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • zur Hausen H . (1999). Immortalization of human cells and their malignant conversion by high-risk human papillomavirus genotypes. Semin Cancer Biol 9: 405–411.

    Article  CAS  PubMed  Google Scholar 

  • zur Hausen H . (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge research support provided by the ICGEB Fellowship Programme, the Associazione Italiana per la Ricerca sul Cancro and the Association for International Cancer Research. K Nagasaka is supported by the YKK Scholarship Foundation and the Kanzawa Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Banks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, M., Narayan, N., Pim, D. et al. Human papillomaviruses, cervical cancer and cell polarity. Oncogene 27, 7018–7030 (2008). https://doi.org/10.1038/onc.2008.351

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.351

Keywords

This article is cited by

Search

Quick links