Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells

Abstract

The cancer stem cell hypothesis posits that malignant growth arises from a rare population of progenitor cells within a tumor that provide it with unlimited regenerative capacity. Such cells also possess increased resistance to chemotherapeutic agents. Resurgence of chemoresistant disease after primary therapy typifies epithelial ovarian cancer and may be attributable to residual cancer stem cells, or cancer-initiating cells, that survive initial treatment. As the cell surface marker CD133 identifies cancer-initiating cells in a number of other malignancies, we sought to determine the potential role of CD133+ cells in epithelial ovarian cancer. We detected CD133 on ovarian cancer cell lines, in primary cancers and on purified epithelial cells from ascitic fluid of ovarian cancer patients. We found CD133+ ovarian cancer cells generate both CD133+ and CD133− daughter cells, whereas CD133− cells divide symmetrically. CD133+ cells exhibit enhanced resistance to platinum-based therapy, drugs commonly used as first-line agents for the treatment of ovarian cancer. Sorted CD133+ ovarian cancer cells also form more aggressive tumor xenografts at a lower inoculum than their CD133− progeny. Epigenetic changes may be integral to the behavior of cancer progenitor cells and their progeny. In this regard, we found that CD133 transcription is controlled by both histone modifications and promoter methylation. Sorted CD133− ovarian cancer cells treated with DNA methyltransferase and histone deacetylase inhibitors show a synergistic increase in cell surface CD133 expression. Moreover, DNA methylation at the ovarian tissue active P2 promoter is inversely correlated with CD133 transcription. We also found that promoter methylation increases in CD133− progeny of CD133+ cells, with CD133+ cells retaining a less methylated or unmethylated state. Taken together, our results show that CD133 expression in ovarian cancer is directly regulated by epigenetic modifications and support the idea that CD133 demarcates an ovarian cancer-initiating cell population. The activity of these cells may be epigenetically detected and such cells might serve as pertinent chemotherapeutic targets for reducing disease recurrence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Balch C, Nephew KP, Huang TH, Bapat SA . (2007). Epigenetic ‘bivalently marked’ process of cancer stem cell-driven tumorigenesis. Bioessays 29: 842–845.

    Article  Google Scholar 

  • Bapat SA, Mali AM, Koppikar CB, Kurrey NK . (2005). Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65: 3025–3029.

    Article  CAS  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C et al. (2007). NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35: D760–D765.

    Article  CAS  Google Scholar 

  • Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ et al. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67: 4010–4015.

    Article  CAS  Google Scholar 

  • Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo J, Lee P et al. (2005). Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin Cancer Res 11: 3686–3696.

    Article  CAS  Google Scholar 

  • Chang JT, Nevins JR . (2006). GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 22: 2926–2933.

    Article  CAS  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951.

    Article  CAS  Google Scholar 

  • Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM et al. (2000). The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275: 5512–5520.

    Article  CAS  Google Scholar 

  • Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A et al. (2007). Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer 14: 14.

    Google Scholar 

  • Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M et al. (2005). ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65: 4320–4333.

    Article  CAS  Google Scholar 

  • Gan Q, Yoshida T, McDonald OG, Owens GK . (2007). Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25: 2–9.

    Article  CAS  Google Scholar 

  • Huang Z, Wen Y, Shandilya R, Marks JR, Berchuck A, Murphy SK . (2006). High throughput detection of M6P/IGF2R intronic hypermethylation and LOH in ovarian cancer. Nucleic Acids Res 34: 555–563.

    Article  CAS  Google Scholar 

  • Hurteau J, Rodriguez GC, Whitaker RS, Shah S, Mills G, Bast RC et al. (1994). Transforming growth factor-beta inhibits proliferation of human ovarian cancer cells obtained from ascites. Cancer 74: 93–99.

    Article  CAS  Google Scholar 

  • Jacobs IJ, Kohler MF, Wiseman RW, Marks JR, Whitaker R, Kerns BA et al. (1992). Clonal origin of epithelial ovarian carcinoma: analysis by loss of heterozygosity, p53 mutation, and X-chromosome inactivation. J Natl Cancer Inst 84: 1793–1798.

    Article  CAS  Google Scholar 

  • Jones PA, Baylin SB . (2007). The epigenomics of cancer. Cell 128: 683–692.

    Article  CAS  Google Scholar 

  • Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB et al. (2005). Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8: 723–729.

    Article  CAS  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391–403.

    Article  CAS  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR et al. (2006). Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5: 67.

    Article  Google Scholar 

  • Liu TX, Becker MW, Jelinek J, Wu WS, Deng M, Mikhalkevich N et al. (2007). Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 13: 78–83.

    Article  Google Scholar 

  • Lobo NA, Shimono Y, Qian D, Clarke MF . (2007). The biology of cancer stem cells. Annu Rev Cell Dev Biol 23: 675–699.

    Article  CAS  Google Scholar 

  • Ma DQ, Cuccaro ML, Jaworski JM, Haynes CS, Stephan DA, Parod J et al. (2007a). Dissecting the locus heterogeneity of autism: significant linkage to chromosome 12q14. Mol Psychiatry 12: 376–384.

    Article  CAS  Google Scholar 

  • Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO et al. (2007b). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132: 2542–2556.

    Article  CAS  Google Scholar 

  • Ma Y, Zou P, Xiao J, Huang S . (2002). The expression and functional characteristics of AC133 antigen in cord blood hematopoietic cells. Zhonghua Nei Ke Za Zhi 41: 798–800.

    CAS  PubMed  Google Scholar 

  • Maitland NJ, Collins AT . (2008). Prostate cancer stem cells: a new target for therapy. J Clin Oncol 26: 2862–2870.

    Article  Google Scholar 

  • Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S et al. (2007). Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67: 3153–3161.

    Article  CAS  Google Scholar 

  • Mizrak D, Brittan M, Alison MR . (2008). CD133: molecule of the moment. J Pathol 214: 3–9.

    Article  CAS  Google Scholar 

  • Mok CH, Tsao SW, Knapp RC, Fishbaugh PM, Lau CC . (1992). Unifocal origin of advanced human epithelial ovarian cancers. Cancer Res 52: 5119–5122.

    CAS  PubMed  Google Scholar 

  • Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C et al. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43: 935–946.

    Article  CAS  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S, Dick JE . (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110.

    Article  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. (2007). A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39: 237–242.

    Article  CAS  Google Scholar 

  • Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H . (2007). Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6: 92–97.

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115.

    Article  CAS  Google Scholar 

  • Ruau D, Ensenat Waser R, Dinger TC, Vallabhapurapu DS, Rolletschek A, Hacker C et al. (2008). Pluripotency associated genes are reactivated by chromatin modifying agents in neurosphere cells. Stem Cells 31: 31.

    Google Scholar 

  • Shiras A, Chettiar S, Shepal V, Rajendran G, Prasad R, Shastry P . (2007). Spontaneous transformation of human adult non-tumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25: 1478–1489.

    Article  CAS  Google Scholar 

  • Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK et al. (2004). Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 103: 2055–2061.

    Article  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  Google Scholar 

  • Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 103: 11154–11159.

    Article  CAS  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. (2007). Epigenetic stem cell signature in cancer. Nat Genet 39: 157–158.

    Article  CAS  Google Scholar 

  • Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L . (2008). Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10: R10.

    Article  Google Scholar 

  • Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90: 5002–5012.

    CAS  Google Scholar 

  • Yin S, Li J, Hu C, Chen X, Yao M, Yan M et al. (2007). CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120: 1444–1450.

    Article  CAS  Google Scholar 

  • Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM et al. (2008). Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68: 4311–4320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs John Lancaster, Jeffrey Boyd, Thomas Hamilton, Gordon Mills and Jean Hurteau for providing many of the cell lines used in these studies; Dr William E Grizzle for preparing tissue microarrays; Mike Cook for help with flow cytometry and Nancy Glover and Julie Fuller for the preparation of slides used for immunohistochemistry. This study was supported by the Kislak-Fields Family Fund, the Duke Comprehensive Cancer Center, and the Gail Parkins Memorial Ovarian Awareness Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Murphy.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, T., Convery, P., Matsumura, N. et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28, 209–218 (2009). https://doi.org/10.1038/onc.2008.374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.374

Keywords

This article is cited by

Search

Quick links