Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A positive role for Myc in TGFβ-induced Snail transcription and epithelial-to-mesenchymal transition

Abstract

Myc and transforming growth factor-β (TGFβ) signaling are mutually antagonistic, that is Myc suppresses the activation of TGFβ-induced genes, whereas TGFβ represses c-myc transcription. Here, we report a positive role for Myc in the TGFβ response, consisting in the induction of an epithelial-to-mesenchymal transition (EMT) and the activation of the EMT-associated gene Snail. Knockdown of either Myc or the TGFβ effectors SMAD3/4 in epithelial cells eliminated Snail induction by TGFβ. Both Myc and SMAD complexes targeted the Snail promoter in vivo, DNA binding occurring in a mutually independent manner. Myc was bound prior to TGFβ treatment, and was required for rapid Snail activation upon SMAD binding induced by TGFβ. On the other hand, c-myc downregulation by TGFβ was a slower event, occurring after Snail induction. The response of Snail to another cytokine, hepatocyte growth factor (HGF), also depended on Myc and SMAD4. Thus, contrary to their antagonistic effects on Cip1 and INK4b, Myc and SMADs cooperate in signal-dependent activation of Snail in epithelial cells. Although Myc also targeted the Snail promoter in serum-stimulated fibroblasts, it was dispensable for its activation in these conditions, further illustrating that the action of Myc in transcriptional regulation is context-dependent. Our findings suggest that Myc and TGFβ signaling may cooperate in promoting EMT and metastasis in carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alexandrow MG, Kawabata M, Aakre M, Moses HL . (1995). Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta 1. Proc Natl Acad Sci USA 92: 3239–3243.

    Article  CAS  Google Scholar 

  • Barrallo-Gimeno A, Nieto MA . (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161.

    Article  CAS  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  Google Scholar 

  • Batsche E, Muchardt C, Behrens J, Hurst HC, Cremisi C . (1998). RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 18: 3647–3658.

    Article  CAS  Google Scholar 

  • Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499–511.

    Article  CAS  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  Google Scholar 

  • Carver EA, Jiang R, Lan Y, Oram KF, Gridley T . (2001). The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol Cell Biol 21: 8184–8188.

    Article  CAS  Google Scholar 

  • Chen CR, Kang Y, Massague J . (2001). Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA 98: 992–999.

    Article  CAS  Google Scholar 

  • Chen CR, Kang Y, Siegel PM, Massague J . (2002). E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110: 19–32.

    Article  CAS  Google Scholar 

  • Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133: 1106–1117.

    Article  CAS  Google Scholar 

  • Cheng AS, Jin VX, Fan M, Smith LT, Liyanarachchi S, Yan PS et al. (2006). Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters. Mol Cell 21: 393–404.

    Article  CAS  Google Scholar 

  • Claassen GF, Hann SR . (2000). A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta-induced cell-cycle arrest. Proc Natl Acad Sci USA 97: 9498–9503.

    Article  CAS  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267–1278.

    Article  CAS  Google Scholar 

  • Dai C, Liu Y . (2004). Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. J Am Soc Nephrol 15: 1402–1412.

    Article  CAS  Google Scholar 

  • de Caestecker MP, Parks WT, Frank CJ, Castagnino P, Bottaro DP, Roberts AB et al. (1998). Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 12: 1587–1592.

    Article  CAS  Google Scholar 

  • Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G et al. (2006). The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66: 2202–2209.

    Article  CAS  Google Scholar 

  • Feng XH, Liang YY, Liang M, Zhai W, Lin X . (2002). Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 9: 133–143.

    Article  CAS  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    Article  CAS  Google Scholar 

  • Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . (2001). Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15: 2069–2082.

    Article  CAS  Google Scholar 

  • Gallant P, Shiio Y, Cheng PF, Parkhurst SM, Eisenman RN . (1996). Myc and Max homologs in Drosophila. Science 274: 1523–1527.

    Article  CAS  Google Scholar 

  • Grandori C, Mac J, Siebelt F, Ayer DE, Eisenman RN . (1996). Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J 15: 4344–4357.

    Article  CAS  Google Scholar 

  • Grooteclaes ML, Frisch SM . (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19: 3823–3828.

    Article  CAS  Google Scholar 

  • Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall’ Olio V et al. (2006). Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8: 764–770.

    Article  CAS  Google Scholar 

  • Hua X, Liu X, Ansari DO, Lodish HF . (1998). Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev 12: 3084–3095.

    Article  CAS  Google Scholar 

  • Hua X, Miller ZA, Wu G, Shi Y, Lodish HF . (1999). Specificity in transforming growth factor beta-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad proteins. Proc Natl Acad Sci USA 96: 13130–13135.

    Article  CAS  Google Scholar 

  • Hurlin PJ, Huang J . (2006). The MAX-interacting transcription factor network. Semin Cancer Biol 16: 265–274.

    Article  CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J, Orkin SH . (2008a). An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132: 1049–1061.

    Article  CAS  Google Scholar 

  • Kim J, Lee JH, Iyer VR . (2008b). Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS ONE 3: e1798.

    Article  Google Scholar 

  • Kleine-Kohlbrecher D, Adhikary S, Eilers M . (2006). Mechanisms of transcriptional repression by Myc. Curr Top Microbiol Immunol 302: 51–62.

    CAS  PubMed  Google Scholar 

  • Leung JY, Ehmann GL, Giangrande PH, Nevins JR . (2008). A role for Myc in facilitating transcription activation by E2F1. Oncogene 27: 4172–4179.

    Article  CAS  Google Scholar 

  • Levy L, Hill CS . (2005). Smad4 dependency defines two classes of transforming growth factor beta target genes and distinguishes TGF-beta-induced epithelial–mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 25: 8108–8125.

    Article  CAS  Google Scholar 

  • Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B . (2003). A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA 100: 8164–8169.

    Article  CAS  Google Scholar 

  • Mao DY, Watson JD, Yan PS, Barsyte-Lovejoy D, Khosravi F, Wong WW et al. (2003). Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol 13: 882–886.

    Article  CAS  Google Scholar 

  • Miettinen PJ, Ebner R, Lopez AR, Derynck R . (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127: 2021–2036.

    Article  CAS  Google Scholar 

  • Oft M, Akhurst RJ, Balmain A . (2002). Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4: 487–494.

    Article  CAS  Google Scholar 

  • Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al. (2001). A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J Biol Chem 276: 27424–27431.

    Article  CAS  Google Scholar 

  • Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME . (2006). The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Biochem J 393: 601–607.

    Article  CAS  Google Scholar 

  • Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P . (1999). TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112 (Part 24): 4557–4568.

    CAS  PubMed  Google Scholar 

  • Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33: 401–406.

    Article  CAS  Google Scholar 

  • Seoane J, Le HV, Massague J . (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729–734.

    Article  CAS  Google Scholar 

  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J . (2001). TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3: 400–408.

    Article  CAS  Google Scholar 

  • Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H et al. (2001). Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3: 392–399.

    Article  CAS  Google Scholar 

  • Thiery JP . (2002). Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  Google Scholar 

  • Thiery JP . (2003). Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–746.

    Article  CAS  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    Article  CAS  Google Scholar 

  • Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR et al. (2001). c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414: 768–773.

    Article  CAS  Google Scholar 

  • Warner BJ, Blain SW, Seoane J, Massague J . (1999). Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol 19: 5913–5922.

    Article  CAS  Google Scholar 

  • Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, Beuger V et al. (2003). Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22: 351–360.

    Article  CAS  Google Scholar 

  • Yang J, Dai C, Liu Y . (2003). Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol 163: 621–632.

    Article  CAS  Google Scholar 

  • Yang J, Dai C, Liu Y . (2005). A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J Am Soc Nephrol 16: 68–78.

    Article  CAS  Google Scholar 

  • Zavadil J, Bottinger EP . (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774.

    Article  CAS  Google Scholar 

  • Zeller KI, Haggerty TJ, Barrett JF, Guo Q, Wonsey DR, Dang CV . (2001). Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J Biol Chem 276: 48285–48291.

    Article  CAS  Google Scholar 

  • Zha YH, He JF, Mei YW, Yin T, Mao L . (2007). Zinc-finger transcription factor snail accelerates survival, migration and expression of matrix metalloproteinase-2 in human bone mesenchymal stem cells. Cell Biol Int 31: 1089–1096.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gioacchino Natoli and Stefano Campaner for critical reading of the paper; all members of the Amati lab for discussion and feedback throughout this work; Giuseppina Giardina for help with lentiviruses; Gabriele Bucci for bioinformatic support; Peter ten Dijke, Thordur Oskarsson and Andreas Trumpp for cell lines; Pier Giuseppe Pelicci for his continuous support and enthusiasm. This work was supported by grants from the Italian Association for Cancer Research (AIRC) and the International Association for Cancer Research (AICR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Amati.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A., Verrecchia, A., Fagà, G. et al. A positive role for Myc in TGFβ-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene 28, 422–430 (2009). https://doi.org/10.1038/onc.2008.395

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.395

Keywords

This article is cited by

Search

Quick links