Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling

Abstract

The receptor tyrosine kinase Ror2 regulates cell migration by acting as a receptor or co-receptor for Wnt5a. Although Wnt5a has been implicated in the invasiveness of several types of tumors, the role of Ror2 in tumor invasion remains elusive. Here we show that osteosarcoma cell lines SaOS-2 and U2OS show invasive properties in vitro by activating Wnt5a/Ror2 signaling in a cell-autonomous manner. The suppressed expression of either Wnt5a or Ror2 in osteosarcoma cells inhibits cell invasiveness accompanying decreased invadopodia formation. Gene-expression profiling identified matrix metalloproteinase 13 (MMP-13) as one of the genes whose expression is downregulated in SaOS-2 cells following suppression of Ror2 expression. Reduced expression or activity of MMP-13 suppresses invasiveness of SaOS-2 cells. Moreover, expression of MMP-13 and cell invasiveness by Wnt5a/Ror2 signaling can be abrogated by an inhibitor of the Src-family protein tyrosine kinases (SFKs), suggesting the role of the SFKs in MMP-13 expression through Wnt5a/Ror2 signaling. We further show that activation of an SFK is inhibited by the suppressed expression of Ror2. Collectively, these results indicate that Wnt5a/Ror2 signaling involves the activation of a SFK, leading to MMP-13 expression, and that constitutively active Wnt5a/Ror2 signaling confers invasive properties on osteosarcoma cells in a cell-autonomous manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Akbarzadeh S, Wheldon LM, Sweet SM, Talma S, Mardakheh FK, Heath JK . (2008). The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src. PLoS ONE 3: e1873.

    Article  Google Scholar 

  • Albini A . (1998). Tumor and endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res 4: 230–241.

    Article  CAS  Google Scholar 

  • Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC . (1999). An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18: 4440–4449.

    Article  CAS  Google Scholar 

  • Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY et al. (2008). Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J Cell Biol 180: 957–971.

    Article  CAS  Google Scholar 

  • Dass CR, Ek ET, Contreras KG, Choong PF . (2006). A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin Exp Metastasis 23: 367–380.

    Article  Google Scholar 

  • Dejmek J, Dejmek A, Safholm A, Sjolander A, Andersson T . (2005). Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res 65: 9142–9146.

    Article  CAS  Google Scholar 

  • Gonzalez-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AM . (2004). Wnt proteins induce dishevelled phosphorylation via an LRP5/6- independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol 24: 4757–4768.

    Article  CAS  Google Scholar 

  • Guo Y, Rubin EM, Xie J, Zi X, Hoang BH . (2008). Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res 466: 2039–2045.

    Article  Google Scholar 

  • He F, Xiong W, Yu X, Espinoza-Lewis R, Liu C, Gu S et al. (2008). Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development 135: 3871–3879.

    Article  CAS  Google Scholar 

  • Hoang BH, Kubo T, Healey JH, Yang R, Nathan SS, Kolb EA et al. (2004). Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 64: 2734–2739.

    Article  CAS  Google Scholar 

  • Iozzo RV, Eichstetter I, Danielson KG . (1995). Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res 55: 3495–3499.

    CAS  PubMed  Google Scholar 

  • Kani S, Oishi I, Yamamoto H, Yoda A, Suzuki H, Nomachi A et al. (2004). The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon. J Biol Chem 279: 50102–50109.

    Article  CAS  Google Scholar 

  • Kodama A, Lechler T, Fuchs E . (2004). Coordinating cytoskeletal tracks to polarize cellular movements. J Cell Biol 167: 203–207.

    Article  CAS  Google Scholar 

  • Kremenevskaja N, von Wasielewski R, Rao AS, Schofl C, Andersson T, Brabant G . (2005). Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 24: 2144–2154.

    Article  CAS  Google Scholar 

  • Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T et al. (2006). Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 66: 10439–10448.

    Article  CAS  Google Scholar 

  • Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A et al. (2003). Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4: 349–360.

    Article  CAS  Google Scholar 

  • Masckauchan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li CM et al. (2006). Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 17: 5163–5172.

    Article  CAS  Google Scholar 

  • Mikels AJ, Nusse R . (2006). Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4: e115.

    Article  Google Scholar 

  • Nishita M, Yoo SK, Nomachi A, Kani S, Sougawa N, Ohta Y et al. (2006). Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol 175: 555–562.

    Article  CAS  Google Scholar 

  • Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y . (2008). Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem 283: 27973–27981.

    Article  CAS  Google Scholar 

  • Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B et al. (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8: 645–654.

    Article  CAS  Google Scholar 

  • Olson DJ, Gibo DM . (1998). Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp Cell Res 241: 134–141.

    Article  CAS  Google Scholar 

  • Oneyama C, Hikita T, Enya K, Dobenecker MW, Saito K, Nada S et al. (2008). The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol Cell 30: 426–436.

    Article  CAS  Google Scholar 

  • Onodera Y, Hashimoto S, Hashimoto A, Morishige M, Mazaki Y, Yamada A et al. (2005). Expression of AMAP1, an ArfGAP, provides novel targets to inhibit breast cancer invasive activities. EMBO J 24: 963–973.

    Article  CAS  Google Scholar 

  • Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S et al. (2006). Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA 103: 5454–5459.

    Article  CAS  Google Scholar 

  • Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP et al. (2007). Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 306: 121–133.

    Article  CAS  Google Scholar 

  • Schlessinger K, McManus EJ, Hall A . (2007). Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol 178: 355–361.

    Article  CAS  Google Scholar 

  • Schulte G, Bryja V, Rawal N, Castelo-Branco G, Sousa KM, Arenas E . (2005). Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation. J Neurochem 92: 1550–1553.

    Article  CAS  Google Scholar 

  • Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y et al. (2004). Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131: 5883–5895.

    Article  CAS  Google Scholar 

  • Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K et al. (2000). Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5: 71–78.

    Article  CAS  Google Scholar 

  • Weaver AM . (2006). Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 23: 97–105.

    Article  Google Scholar 

  • Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M et al. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1: 279–288.

    Article  CAS  Google Scholar 

  • Wodarz A, Nusse R . (1998). Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14: 59–88.

    Article  CAS  Google Scholar 

  • Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S et al. (2008). Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell 15: 23–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Endo for critical reading of the paper. We also thank K Mizuno for pEYFP-Actin. This work was supported by a Grant-in-Aid for Scientific Research in Priority Areas (YM), a Grant-in-Aid for Scientific Research (B) (YM), a Grant from the Global Center of Excellence Program ‘Education and Research on Signal Transduction Medicine in the Coming Generation’ (YM), a Grant-in-Aid for Young Scientists (B) (MN) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, a Grant from Hyogo Science and Technology Association (MN) and a Grant from Takeda Science Foundation (MN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Nishita or Y Minami.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enomoto, M., Hayakawa, S., Itsukushima, S. et al. Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene 28, 3197–3208 (2009). https://doi.org/10.1038/onc.2009.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.175

Keywords

This article is cited by

Search

Quick links