Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Common corruption of the mTOR signaling network in human tumors

Abstract

The mammalian target of rapamycin (mTOR) is responsive to numerous extracellular and intracellular cues and, through the formation of two physically and functionally distinct complexes, has a central role in the homeostatic control of cell growth, proliferation and survival. Through the aberrant activation of mTOR signaling, the perception of cellular growth signals becomes disconnected from the processes promoting cell growth, and this underlies the pathophysiology of a number of genetic tumor syndromes and cancers. Here, we review the oncogenes and tumor suppressors comprising the regulatory network upstream of mTOR, highlight the human cancers in which mTOR is activated and discuss how dysregulated mTOR signaling provides tumors a selective growth advantage. In addition, we discuss why activation of mTOR, as a consequence of distinct oncogenic events, results in diverse clinical outcomes, and how the complexity of the mTOR signaling network might dictate therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. (1996). EMBO J 15: 6541–6551.

  • Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM et al. (2008). Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358: 140–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS et al. (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–758.

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  CAS  Google Scholar 

  • Carriere A, Cargnello M, Julien LA, Gao H, Bonneil E, Thibault P et al. (2008). Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol 18: 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  • Castellvi J, Garcia A, Rojo F, Ruiz-Marcellan C, Gil A, Baselga J et al. (2006). Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer 107: 1801–1811.

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti A, Zhai G, Suzuki Y, Sarkesh S, Black PM, Muzikansky A et al. (2004). The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22: 1926–1933.

    Article  CAS  PubMed  Google Scholar 

  • Chiang GG, Abraham RT . (2007). Targeting the mTOR signaling network in cancer. Trends Mol Med 13: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Chiu MI, Katz H, Berlin V . (1994). RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91: 12574–12578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi KM, McMahon LP, Lawrence Jr JC . (2003). Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J Biol Chem 278: 19667–19673.

    Article  CAS  PubMed  Google Scholar 

  • Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J . (2008). Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 105: 17414–17419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S et al. (2008). Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5: e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conde E, Angulo B, Tang M, Morente M, Torres-Lanzas J, Lopez-Encuentra A et al. (2006). Molecular context of the EGFR mutations: evidence for the activation of mTOR/S6K signaling. Clin Cancer Res 12: 710–717.

    Article  CAS  PubMed  Google Scholar 

  • Crino PB, Nathanson KL, Henske EP . (2006). The tuberous sclerosis complex. N Engl J Med 355: 1345–1356.

    Article  CAS  PubMed  Google Scholar 

  • Davies DM, Johnson SR, Tattersfield AE, Kingswood JC, Cox JA, McCartney DL et al. (2008). Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med 358: 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Denko NC . (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8: 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Dowling RJ, Pollak M, Sonenberg N . (2009). Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs 23: 77–91.

    Article  CAS  PubMed  Google Scholar 

  • Easton JB, Houghton PJ . (2006). mTOR and cancer therapy. Oncogene 25: 6436–6446.

    Article  CAS  PubMed  Google Scholar 

  • Edinger AL, Thompson CB . (2002). Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13: 2276–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman JA, Luo J, Cantley LC . (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7: 606–619.

    Article  CAS  PubMed  Google Scholar 

  • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C et al. (2008). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27: 1932–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faivre S, Kroemer G, Raymond E . (2006). Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5: 671–688.

    Article  CAS  PubMed  Google Scholar 

  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al. (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7: e38.

    Article  CAS  PubMed  Google Scholar 

  • Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G et al. (2006). Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59: 490–498.

    Article  CAS  PubMed  Google Scholar 

  • Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA et al. (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16: 1865–1870.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez JM, Alessi DR . (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416: 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM et al. (2009). Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 421: 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH et al. (2004). AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 279: 2737–2746.

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2009). The pharmacology of mTOR inhibition. Sci Signal 2: e24.

    Article  Google Scholar 

  • Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11: 859–871.

    Article  CAS  PubMed  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30: 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177–189.

    Article  CAS  PubMed  Google Scholar 

  • Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. (2004). The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166: 213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington LS, Findlay GM, Lamb RF . (2005). Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci 30: 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Heitman J, Movva NR, Hall MN . (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909.

    Article  CAS  PubMed  Google Scholar 

  • Holz MK, Ballif BA, Gygi SP, Blenis J . (2005). mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123: 569–580.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Dibble CC, Matsuzaki M, Manning BD . (2008). The TSC1–TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28: 4104–4115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Manning BD . (2008). The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412: 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wu S, Wu CL, Manning BD . (2009). Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 69: 6107–6114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al. (2002). Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22: 7004–7014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL . (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27: 1919–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL . (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126: 955–968.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan KL . (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al. (2006). SIN1/MIP1 maintains rictor–mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125–137.

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  • James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO et al. (2009). NF2/Merlin is a novel negative regulator of mTOR complex 1 and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 29: 4250–4261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K . (2005). The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102: 8573–8578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbowniczek M, Spittle CS, Morrison T, Wu H, Henske EP . (2008). mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 128: 980–987.

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H et al. (2003). GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11: 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL . (2008). Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10: 935–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer CL, Klein RR, Mendelson J, Browne W, Samadzedeh LK, Vanpatten K et al. (2006). Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate 66: 1203–1212.

    Article  CAS  PubMed  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N . (1990). Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345: 544–547.

    Article  CAS  PubMed  Google Scholar 

  • Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y et al. (2007). IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130: 440–455.

    Article  CAS  PubMed  Google Scholar 

  • Lin HJ, Hsieh FC, Song H, Lin J . (2005). Elevated phosphorylation and activation of PDK-1/AKT pathway in human breast cancer. Br J Cancer 93: 1372–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457–468.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG . (2009). Loss of the tumor suppressor NF2/merlin constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 29: 4235–4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu KH, Wu W, Dave B, Slomovitz BM, Burke TW, Munsell MF et al. (2008). Loss of tuberous sclerosis complex-2 function and activation of mammalian target of rapamycin signaling in endometrial carcinoma. Clin Cancer Res 14: 2543–2550.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Ma XM, Blenis J . (2009). Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10: 307–318.

    Article  PubMed  CAS  Google Scholar 

  • Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10: 594–601.

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Logsdon MN, Lipovsky AI, Abbott D, Kwiatkowski DJ, Cantley LC . (2005). Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev 19: 1773–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Mathew R, Karantza-Wadsworth V, White E . (2007). Role of autophagy in cancer. Nat Rev Cancer 7: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClatchey AI . (2007). Neurofibromatosis. Annu Rev Pathol 2: 191–216.

    Article  CAS  PubMed  Google Scholar 

  • McDonald JM, Pelloski CE, Ledoux A, Sun M, Raso G, Komaki R et al. (2008). Elevated phospho-S6 expression is associated with metastasis in adenocarcinoma of the lung. Clin Cancer Res 14: 7832–7837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills JR, Hippo Y, Robert F, Chen SM, Malina A, Lin CJ et al. (2008). mTORC1 promotes survival through translational control of Mcl-1. Proc Natl Acad Sci USA 105: 10853–10858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K et al. (2003). The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278: 15461–15464.

    Article  CAS  PubMed  Google Scholar 

  • Nozawa H, Watanabe T, Nagawa H . (2007). Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett 251: 105–113.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orloff MS, Eng C . (2008). Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene 27: 5387–5397.

    Article  CAS  PubMed  Google Scholar 

  • Panner A, James CD, Berger MS, Pieper RO . (2005). mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol 25: 8809–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L et al. (2007). Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109: 2257–2267.

    Article  CAS  PubMed  Google Scholar 

  • Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M et al. (2007). Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405: 513–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelloski CE, Lin E, Zhang L, Yung WK, Colman H, Liu JL et al. (2006). Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res 12: 3935–3941.

    Article  CAS  PubMed  Google Scholar 

  • Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C et al. (2006). Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10: 159–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP . (2007). Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol 177: 346–352.

    Article  PubMed  Google Scholar 

  • Roberts PJ, Der CJ . (2007). Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26: 3291–3310.

    Article  CAS  PubMed  Google Scholar 

  • Rojo F, Najera L, Lirola J, Jimenez J, Guzman M, Sabadell MD et al. (2007). 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 13: 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Rosner M, Siegel N, Valli A, Fuchs C, Hengstschlager M . (2009). mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids. doi:10.1007/s00726-008-0230-7.

    Article  PubMed  CAS  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . (2004). Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101: 13489–13494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C ; et al. (2004). The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10: 484–486.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH . (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G et al. (1995). Isolation of a protein target of the FKBP12–rapamycin complex in mammalian cells. J Biol Chem 270: 815–822.

    Article  CAS  PubMed  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25: 903–915.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22: 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  • Schalm SS, Blenis J . (2002). Identification of a conserved motif required for mTOR signaling. Curr Biol 12: 632–639.

    Article  CAS  PubMed  Google Scholar 

  • Schalm SS, Fingar DC, Sabatini DM, Blenis J . (2003). TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13: 797–806.

    Article  CAS  PubMed  Google Scholar 

  • Shackelford DB, Vasquez DS, Corbeil J, Wu S, Leblanc M, Wu CL et al. (2009). mTOR and HIF-1\{alpha\}-mediated tumor metabolism in an LKB1 mouse model of Peutz–J. Proc Natl Acad Sci USA 106: 11137–11142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah OJ, Wang Z, Hunter T . (2004). Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14: 1650–1656.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ . (2009). LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 196: 65–80.

    Article  CAS  Google Scholar 

  • Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Cantley LC . (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430.

    Article  CAS  PubMed  Google Scholar 

  • Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K et al. (2008). Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26: 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  • Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12: 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y et al. (2009). An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284: 8023–8032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander HE, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9: 316–323.

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB . (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L et al. (2006). Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66: 6589–6597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C . (2008). Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135: 1972–1983.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Beugnet A, Murakami M, Yamanaka S, Proud CG . (2005). Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 25: 2558–2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel HG, de SE, Fridman JS, Malina A, Ray S, Kogan S et al. (2004). Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428: 332–337.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN . (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Inoki K, Ikenoue T, Guan KL . (2006). Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20: 2820–2832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Dai Q, Sun DF, Xiong H, Tian XQ, Gao FH et al. (2009). mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol 16: 2617–2628.

    Article  PubMed  Google Scholar 

  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60: 1541–1545.

    CAS  PubMed  Google Scholar 

  • Zhou L, Huang Y, Li J, Wang Z . (2009). The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. doi:10.1007/s12032-009-9201-4.

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Tan M, Stone HV, Klos KS, Lan KH, Yang Y . (2004). Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10: 6779–6788.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B D Manning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menon, S., Manning, B. Common corruption of the mTOR signaling network in human tumors. Oncogene 27 (Suppl 2), S43–S51 (2008). https://doi.org/10.1038/onc.2009.352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.352

Keywords

This article is cited by

Search

Quick links