Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PU.1 is regulated by NF-κB through a novel binding site in a 17 kb upstream enhancer element

Abstract

The majority of patients with acute myeloid leukemia (AML) still die of their disease, and novel therapeutic concepts are needed. Timely expression of the hematopoietic master regulator PU.1 is crucial for normal development of myeloid and lymphoid cells. Targeted disruption of an upstream regulatory element (URE) located several kb upstream in the PU.1 promoter decreases PU.1 expression thereby inducing AML in mice. In addition, suppression of PU.1 has been observed in specific subtypes of human AML. Here, we identified nuclear factor-κB (NF-κB) to activate PU.1 expression through a novel site within the URE. We found sequence variations of this particular NF-κB site in 4 of 120 AML patients. These variant NF-κB sequences failed to mediate activation of PU.1. Moreover, the synergistic activation of PU.1 together with CEBPB through these variant sequences was also lost. Finally, AML patients with such variant sequences had suppressed PU.1 mRNA expression. This study suggests that changes of a single base pair in a distal element critically affect the regulation of the tumor suppressor gene PU.1 thereby contributing to the development of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anderson KL, Smith KA, Pio F, Torbett BE, Maki RA . (1998). Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent. Blood 92: 1576–1585.

    CAS  PubMed  Google Scholar 

  • Back J, Allman D, Chan S, Kastner P . (2005). Visualizing PU.1 activity during hematopoiesis. Exp Hematol 33: 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Zhang P, Voso MT, Hohaus S, Gonzalez DA, Glass CK et al. (1995). Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B. Blood 85: 2918–2928.

    CAS  PubMed  Google Scholar 

  • Cook WD, McCaw BJ, Herring C, John DL, Foote SJ, Nutt SL et al. (2004). PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood 104: 3437–3444.

    Article  CAS  PubMed  Google Scholar 

  • Ebralidze AK, Guibal FC, Steidl U, Zhang P, Lee S, Bartholdy B et al. (2008). PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev 22: 2085–2092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman AD . (2007). C/EBPalpha induces PU.1 and interacts with AP-1 and NF-kappaB to regulate myeloid development. Blood Cells Mol Dis 39: 340–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . (2000). Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 164: 2200–2206.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh G, van Duyne G, Ghosh S, Sigler PB . (1995). Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 373: 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. (2001). Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  • Hromas R, Orazi A, Neiman RS, Maki R, Van Beveran C, Moore J et al. (1993). Hematopoietic lineage-restricted and stage-restricted expression of the ETS oncogene family member PU.1. Blood 82: 2998–3004.

    CAS  PubMed  Google Scholar 

  • Huang G, Zhang P, Hirai H, Elf S, Yan X, Chen Z et al. (2008). PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat Genet 40: 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Hoogenkamp M, Krysinska H, Ingram R, Huang G, Barlow R, Clarke D et al. (2007). The PU.1 locus is differentially regulated at the level of chromatin structure and non-coding transcription by alternate mechanisms at distinct developmental stages of hematopoiesis. Mol Cell Biol 27: 7425–7438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA . (1990). The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61: 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Kleinjan DA, van Heyningen V . (2005). Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76: 8–32.

    Article  CAS  PubMed  Google Scholar 

  • Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C . (2000). Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 14: 399–402.

    Article  CAS  PubMed  Google Scholar 

  • Kummalue T, Friedman AD . (2003). Cross-talk between regulators of myeloid development: C/EBPalpha binds and activates the promoter of the PU.1 gene. J Leukoc Biol 74: 464–470.

    Article  CAS  PubMed  Google Scholar 

  • Kunsch C, Ruben SM, Rosen CA . (1992). Selection of optimal kappaB/Rel DNA-binding motifs: interaction of both subunits of NF-kappaB with DNA is required for transcriptional activation. Mol Cell Biol 12: 4412–4421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry JR, Mager DL, Wilhelm BT . (2003). Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet 19: 640–648.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Okuno Y, Zhang P, Radomska HS, Chen H, Iwasaki H et al. (2001). Regulation of the PU.1 gene by distal elements. Blood 98: 2958–2965.

    Article  CAS  PubMed  Google Scholar 

  • Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T et al. (1993). Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 90: 10193–10197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H et al. (1996). Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15: 5647–5658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N et al. (2006). ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 107: 3330–3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. (2002). Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  • Nerlov C, Graf T . (1998). PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 12: 2403–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijnik A, Mott R, Kwiatkowski DP, Udalova IA . (2003). Comparing the fine specificity of DNA binding by NF-kappaB p50 and p52 using principal coordinates analysis. Nucleic Acids Res 31: 1497–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nutt SL, Metcalf D, D’Amico A, Polli M, Wu L . (2005). Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201: 221–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno Y, Huang G, Rosenbauer F, Evans EK, Radomska HS, Iwasaki H et al. (2005). Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol Cell Biol 25: 2832–2845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paz-Priel I, Cai DH, Wang D, Kowalski J, Blackford A, Liu H et al. (2005). CCAAT/enhancer binding protein alpha (C/EBPalpha) and C/EBPalpha myeloid oncoproteins induce bcl-2 via interaction of their basic regions with nuclear factor-kappaB p50. Mol Cancer Res 10: 585–596.

    Article  Google Scholar 

  • Rosenbauer F, Owens BM, Yu L, Tumang JR, Steidl U, Kutok JL et al. (2006). Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet 38: 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. (2004). Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36: 624–630.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz ML, Baeuerle PA . (1991). The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J 10: 3805–3817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott EW, Simon MC, Anastai J, Singh H . (1994). The transcription factor PU.1 is required for the development of multiple hematopoietic lineages. Science 265: 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  • Steidl U, Steidl C, Ebralidze A, Chapuy B, Han HJ, Will B et al. (2007). A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J Clin Invest 117: 2611–2620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein B, Cogswell PC, Baldwin AS . (1993). Functional and physical associations between NF-kappa B and C/EBP family members: a Rel domain–bZIP interaction. Mol Cell Biol 13: 3964–3974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suraweera N, Meijne E, Moody J, Carvajal-Carmona LG, Yoshida K, Pollard P et al. (2005). Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene 19: 3678–3683.

    Article  Google Scholar 

  • Tisné C, Hartmann B, Delepierre M . (1999). NF-kappa B binding mechanism: a nuclear magnetic resonance and modeling study of a GGG → CTC mutation. Biochemistry 38: 3883–3894.

    Article  PubMed  Google Scholar 

  • Udalova IA, Richardson A, Denys A, Smith C, Ackerman H, Foxwell B et al. (2000). Functional consequences of a polymorphism affecting NF-kappaB p50-p50 binding to the TNF promoter region. Mol Cell Biol 20: 9113–9119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voso MT, Burn TC, Wulf G, Lim B, Leone G, Tenen DG . (1994). Inhibition of hematopoiesis by competitive binding of the transcription factor PU.1. Proc Natl Acad Sci USA 91: 7932–7936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeamans C, Wang D, Paz-Priel I, Torbett BE, Tenen DG, Friedman AD . (2007). C/EBPalpha binds and activates the PU.1 distal enhancer to induce monocyte lineage commitment. Blood 110: 3136–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Swiss National Science Foundation SF 310000-113761 (to BUM), and a grant from the Swiss Cancer League, OCS 01731082005 (to BUM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B U Mueller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonadies, N., Neururer, C., Steege, A. et al. PU.1 is regulated by NF-κB through a novel binding site in a 17 kb upstream enhancer element. Oncogene 29, 1062–1072 (2010). https://doi.org/10.1038/onc.2009.371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.371

Keywords

This article is cited by

Search

Quick links