Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regression of murine lung tumors by the let-7 microRNA

Abstract

MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small-cell lung cancer (NSCLC) significantly reduces the tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bitko V, Barik S . (2008). Nasal delivery of siRNA. Methods Mol Biol 442: 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Bitko V, Musiyenko A, Shulyayeva O, Barik S . (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11: 50–55.

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Wilson G . (2003). Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us? Cancer Biol Ther 2: 477–490.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Liu C-G, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. (2004a). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101: 11755–11760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004b). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edinger AL, Thompson CB . (2004). Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663–669.

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Johnson SM, Bai L, Saito K, Partridge J, Reinert KL et al. (2005). Post-embryonic expression of C elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev Dyn 234: 868–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. (2008). The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7: 759–764.

    Article  CAS  PubMed  Google Scholar 

  • Hohla F, Schally AV, Kanashiro CA, Buchholz S, Baker B, Kannadka C et al. (2007). Growth inhibition of non-small-cell lung carcinoma by BN/GRP antagonist is linked with suppression of K-Ras, COX-2, and pAkt. Proc Natl Acad Sci USA 104: 18671–18676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isobe T, Herbst RS, Onn A . (2005). Current management of advanced non-small cell lung cancer: targeted therapy. Semin Oncol 32: 315–328.

    Article  CAS  PubMed  Google Scholar 

  • Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M et al. (2005). The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65: 10280–10288.

    Article  CAS  PubMed  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15: 3243–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67: 7713–7722.

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  PubMed  Google Scholar 

  • Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al. (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 105: 3903–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Dutta A . (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21: 1025–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levenkova N, Gu Q, Rux JJ . (2004). Gene specific siRNA selector. Bioinformatics 20: 430–432.

    Article  CAS  PubMed  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP . (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315: 1576–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikitin AY, Alcaraz A, Anver MR, Bronson RT, Cardiff RD, Dixon D et al. (2004). Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res 64: 2307–2316.

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B et al. (2007). Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle 6: 2585–2590.

    Article  CAS  PubMed  Google Scholar 

  • Roush S, Slack FJ . (2008). The let-7 family of microRNAs. Trends Cell Biol 18: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. (2007). MicroRNA let-7a downregulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67: 9762–9770.

    Article  CAS  PubMed  Google Scholar 

  • Sevignani C, Calin GA, Nnadi SC, Shimizu M, Davuluri RV, Hyslop T et al. (2007). MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104: 8017–8022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegfried JM, Krishnamachary N, Gaither Davis A, Gubish C, Hunt JD, Shriver SP . (1999). Evidence for autocrine actions of neuromedin B and gastrin-releasing peptide in non-small cell lung cancer. Pulm Pharmacol Ther 12: 291–302.

    Article  CAS  PubMed  Google Scholar 

  • Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. (2008). Modelling Myc inhibition as a cancer therapy. Nature 455: 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  • Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N et al. (2009). Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther (e-pub ahead of print 8 September 2009).

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109–1123.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Xianping Liang for help with animal husbandry and genotyping, and Paul Lebourgeois for histopathological analyses. PT was supported by an NIH NRSA postdoctoral fellowship (F32CA130376). PM was supported by a postdoctoral fellowship from the Ministry of Education and Science of Spain (MEC) and from the Hope Funds for Cancer Research. JBW was supported by the ASTRO Junior Faculty Career Research Training Award. FJS and JBW were supported by grants from the NIH (CA131301-01A1) and from the Connecticut Department of Public Health (RFP no. 2006-0913).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A G Bader, J B Weidhaas or F J Slack.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trang, P., Medina, P., Wiggins, J. et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 29, 1580–1587 (2010). https://doi.org/10.1038/onc.2009.445

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.445

Keywords

This article is cited by

Search

Quick links