Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast

Abstract

Breast carcinoma invasion is associated with prominent alterations in stromal fibroblasts. Carcinoma-associated fibroblasts (CAF) support and promote tumorigenesis, whereas normal mammary fibroblasts (NF) are thought to suppress tumor progression. Little is known about the difference in gene expression between CAF and NF or the patient-to-patient variability in gene expression. Paired CAF and NF were isolated from six primary human breast carcinoma specimens. RNA was extracted from low-passage cultures of CAF and NF and analyzed with Affymetrix Human Genome U133 Plus 2.0 arrays. The array data were examined with an empirical Bayes model and filtered according to the posterior probability of equivalent expression and fold difference in expression. Twenty-one genes (27 probe sets) were up-regulated in CAF, as compared with NF. Known functions of these genes relate to paracrine or intracellular signaling, transcriptional regulation, extracellular matrix and cell adhesion/migration. Ten genes (14 probe sets) were down-regulated in CAF, including the pluripotency transcription factor KLF4. Quantitative RT–PCR analysis of 10 genes validated the array results. Immunohistochemical staining for three gene products confirmed stromal expression in terms of location and relative quantity. Surprisingly, the variability of gene expression was slightly higher in NF than in CAF, suggesting inter-individual heterogeneity of normal stroma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17–32.

    Article  CAS  Google Scholar 

  • Briand P, Nielsen KV, Madsen MW, Petersen OW . (1996). Trisomy 7p and malignant transformation of human breast epithelial cells following epidermal growth factor withdrawal. Cancer Res 56: 2039–2044.

    CAS  Google Scholar 

  • Campbell IG, Qiu W, Polyak K, Haviv I . (2008). Breast-cancer stromal cells with TP53 mutations. N Engl J Med 358: 1634–1635; author reply 1636.

    Article  CAS  Google Scholar 

  • Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O et al. (2008). Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114: 47–62.

    Article  Google Scholar 

  • Chang CF, Westbrook R, Ma J, Cao D . (2007). Transforming growth factor-beta signaling in breast cancer. Front Biosci 12: 4393–4401.

    Article  CAS  Google Scholar 

  • de Jong JS, van Diest PJ, van der Valk P, Baak JP . (1998). Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: an inventory in search of autocrine and paracrine loops. J Pathol 184: 44–52.

    Article  CAS  Google Scholar 

  • Duque JL, Adam RM, Mullen JS, Lin J, Richie JP, Freeman MR . (2001). Heparin-binding epidermal growth factor-like growth factor is an autocrine mediator of human prostate stromal cell growth in vitro. J Urol 165: 284–288.

    Article  CAS  Google Scholar 

  • Erickson AC, Barcellos-Hoff MH . (2003). The not-so innocent bystander: the microenvironment as a therapeutic target in cancer. Expert Opin Ther Targets 7: 71–88.

    Article  CAS  Google Scholar 

  • Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V et al. (2009). A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15: 68–74.

    Article  CAS  Google Scholar 

  • Fiegl H, Millinger S, Goebel G, Muller-Holzner E, Marth C, Laird PW et al. (2006). Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 66: 29–33.

    Article  CAS  Google Scholar 

  • Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14: 518–527.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V et al. (2005). Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37: 899–905.

    Article  CAS  Google Scholar 

  • Iacobuzio-Donahue CA, Argani P, Hempen PM, Jones J, Kern SE . (2002). The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res 62: 5351–5357.

    CAS  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

    Article  Google Scholar 

  • Ji Q, Aoyama C, Nien YD, Liu PI, Chen PK, Chang L et al. (2004). Selective loss of AKR1C1 and AKR1C2 in breast cancer and their potential effect on progesterone signaling. Cancer Res 64: 7610–7617.

    Article  CAS  Google Scholar 

  • Kalluri R, Zeisberg M . (2006). Fibroblasts in cancer. Nat Rev Cancer 6: 392–401.

    Article  CAS  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: 557–563.

    Article  CAS  Google Scholar 

  • Kendziorski CM, Newton MA, Lan H, Gould MN . (2003). On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat Med 22: 3899–3914.

    Article  CAS  Google Scholar 

  • Kim YC, Clark RJ, Ranheim EA, Alexander CM . (2008). Wnt1 expression induces short-range and long-range cell recruitments that modify mammary tumor development and are not induced by a cell-autonomous beta-catenin effector. Cancer Res 68: 10145–10153.

    Article  CAS  Google Scholar 

  • Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C . (2002). Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32: 355–357.

    Article  CAS  Google Scholar 

  • Lewis MJ, Wiebe JP, Heathcote JG . (2004). Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma. BMC Cancer 4: 27.

    Article  Google Scholar 

  • Massague J . (2007). Sorting out breast-cancer gene signatures. N Engl J Med 356: 294–297.

    Article  CAS  Google Scholar 

  • Mercier I, Casimiro MC, Wang C, Rosenberg AL, Quong J, Minkeu A et al. (2008). Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther 7: 1212–1225.

    Article  CAS  Google Scholar 

  • Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68: 4331–4339.

    Article  CAS  Google Scholar 

  • Mueller MM, Fusenig NE . (2004). Friends or foes— bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4: 839–849.

    Article  CAS  Google Scholar 

  • Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW, De La Chapelle A et al. (2004). Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene 23: 7366–7377.

    Article  CAS  Google Scholar 

  • Narita K, Chien J, Mullany SA, Staub J, Qian X, Lingle WL et al. (2007). Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J Biol Chem 282: 14413–14420.

    Article  CAS  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348.

    Article  CAS  Google Scholar 

  • Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL et al. (2007). Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 357: 2543–2551.

    Article  CAS  Google Scholar 

  • Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J et al. (1998). WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci USA 95: 14717–14722.

    Article  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  Google Scholar 

  • Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M et al. (2008). No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40: 650–655.

    Article  CAS  Google Scholar 

  • R-Development-Core-Team (2008). A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org.

  • Singer CF, Gschwantler-Kaulich D, Fink-Retter A, Haas C, Hudelist G, Czerwenka K et al. (2007). Differential gene expression profile in breast cancer-derived stromal fibroblasts. Breast Cancer Res Treat 110: 273–281.

    Article  Google Scholar 

  • Singer CF, Gschwantler-Kaulich D, Fink-Retter A, Haas C, Hudelist G, Czerwenka K et al. (2008). Differential gene expression profile in breast cancer-derived stromal fibroblasts. Breast Cancer Res Treat 110: 273–281.

    Article  CAS  Google Scholar 

  • Singer CF, Kronsteiner N, Marton E, Kubista M, Cullen KJ, Hirtenlehner K et al. (2002). MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res Treat 72: 69–77.

    Article  CAS  Google Scholar 

  • Storey JD, Tibshirani R . (2003). Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100: 9440–9445.

    Article  CAS  Google Scholar 

  • Sutmuller M, Bruijn JA, de Heer E . (1997). Collagen types VIII and X, two non-fibrillar, short-chain collagens. Structure homologies, functions and involvement in pathology. Histol Histopathol 12: 557–566.

    CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.

    Article  CAS  Google Scholar 

  • Tang Y, Kesavan P, Nakada MT, Yan L . (2004). Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol Cancer Res 2: 73–80.

    CAS  PubMed  Google Scholar 

  • van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  CAS  Google Scholar 

  • Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP . (2001). Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res 61: 8917–8923.

    CAS  Google Scholar 

  • You Z, Saims D, Chen S, Zhang Z, Guttridge DC, Guan KL et al. (2002). Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J Cell Biol 157: 429–440.

    Article  CAS  Google Scholar 

  • Zhang W, Chen X, Kato Y, Evans PM, Yuan S, Yang J et al. (2006). Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol 26: 2055–2064.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Christina Kendziorski for help with the array analyses and Dr Korise Rasmusson for her assistance with the manuscript preparation. Maret Bauer was supported by a scholarship from the Dr Mildred Scheel Stiftung. This research was funded by National Institutes of Health grant RO1 CA107012 and a grant from the Wisconsin Partnership program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Friedl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Su, G., Casper, C. et al. Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene 29, 1732–1740 (2010). https://doi.org/10.1038/onc.2009.463

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.463

Keywords

This article is cited by

Search

Quick links