Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TrkA overexpression enhances growth and metastasis of breast cancer cells

Abstract

The Trk family of neurotrophin tyrosine kinase receptors is emerging as an important player in carcinogenic progression in non-neuronal tissues. Here, we show that breast tumors present high levels of TrkA and phospho-TrkA compared to normal breast tissues. To further evaluate the precise functions of TrkA overexpression in breast cancer development, we have performed a series of biological tests using breast cancer cells that stably overexpress TrkA. We show that (1) TrkA overexpression promoted cell growth, migration and invasion in vitro; (2) overexpression of TrkA per se conferred constitutive activation of its tyrosine kinase activity; (3) signal pathways including PI3K-Akt and ERK/p38 MAP kinases were activated by TrkA overexpression and were required for the maintenance of a more aggressive cellular phenotype; and (4) TrkA overexpression enhanced tumor growth, angiogenesis and metastasis of xenografted breast cancer cells in immunodeficient mice. Moreover, recovered metastatic cells from the lungs exhibited enhanced anoikis resistance that was abolished by the pharmacological inhibitor K252a, suggesting that TrkA-promoted breast tumor metastasis could be mediated at least in part by enhancing anoikis resistance. Together, these results provide the first direct evidence that TrkA overexpression enhances the tumorigenic properties of breast cancer cells and point to TrkA as a potential target in breast cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R et al. (2008). Nerve growth factor is a potential molecular target in breast cancer. Cancer Res 68: 346–351.

    Article  CAS  Google Scholar 

  • Aragona M, Panetta S, Silipigni AM, Romeo DL, Pastura G, Mesiti M et al. (2001). Nerve growth factor receptor immunoreactivity in breast cancer patients. Cancer Invest 19: 692–697.

    Article  CAS  Google Scholar 

  • Campos X, Munoz Y, Selman A, Yazigi R, Moyano L, Weinstein-Oppenheimer C et al. (2007). Nerve growth factor and its high-affinity receptor trkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer. Gynecol Oncol 104: 168–175.

    Article  CAS  Google Scholar 

  • Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P et al. (2002). Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J 16: 1307–1309.

    Article  CAS  Google Scholar 

  • Chao MV . (1994). The p75 neurotrophin receptor. J Neurobiol 25: 1373–1385.

    Article  CAS  Google Scholar 

  • Chiarenza A, Lazarovici P, Lempereur L, Cantarella G, Bianchi A, Bernardini R . (2001). Tamoxifen inhibits nerve growth factor-induced proliferation of the human breast cancerous cell line MCF-7. Cancer Res 61: 3002–3008.

    CAS  Google Scholar 

  • Davidson B, Reich R, Lazarovici P, Ann Florenes V, Nielsen S, Nesland JM . (2004). Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat 83: 119–128.

    Article  CAS  Google Scholar 

  • Davidson B, Reich R, Lazarovici P, Nesland JM, Skrede M, Risberg B et al. (2003). Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res 9: 2248–2259.

    CAS  Google Scholar 

  • Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B et al. (2001a). Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res 61: 4337–4340.

    CAS  Google Scholar 

  • Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V et al. (2001b). Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 276: 17864–17870.

    Article  CAS  Google Scholar 

  • Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H . (2003). Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22: 5592–5601.

    Article  CAS  Google Scholar 

  • Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS . (2004). Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430: 1034–1039.

    Article  CAS  Google Scholar 

  • Frisch SM, Screaton RA . (2001). Anoikis mechanisms. Curr Opin Cell Biol 13: 555–562.

    Article  CAS  Google Scholar 

  • Geiger TR, Peeper DS . (2007). Critical role for TrkB kinase function in anoikis suppression, tumorigenesis, and metastasis. Cancer Res 67: 6221–6229.

    Article  CAS  Google Scholar 

  • Hedley BD, Vaidya KS, Phadke P, MacKenzie L, Dales DW, Postenka CO et al. (2008). BRMS1 suppresses breast cancer metastasis in multiple experimental models of metastasis by reducing solitary cell survival and inhibiting growth initiation. Clin Exp Metastasis 25: 727–740.

    Article  CAS  Google Scholar 

  • Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P et al. (2006). Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116: 1561–1570.

    Article  CAS  Google Scholar 

  • McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD et al. (1999). Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96: 4540–4545.

    Article  CAS  Google Scholar 

  • Mercurio AM, Lipscomb EA, Bachelder RE . (2005). Non-angiogenic functions of VEGF in breast cancer. J Mammary Gland Biol Neoplasia 10: 283–290.

    Article  Google Scholar 

  • Mukai J, Suvant P, Sato TA . (2003). Nerve growth factor-dependent regulation of NADE-induced apoptosis. Vitam Horm 66: 385–402.

    Article  CAS  Google Scholar 

  • Nakanishi K, Sakamoto M, Yasuda J, Takamura M, Fujita N, Tsuruo T et al. (2002). Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Res 62: 2971–2975.

    CAS  Google Scholar 

  • Rennebeck G, Martelli M, Kyprianou N . (2005). Anoikis and survival connections in the tumor microenvironment: is there a role in prostate cancer metastasis? Cancer Res 65: 11230–11235.

    Article  CAS  Google Scholar 

  • Reichardt LF . (2006). Neurotrophin-regulated signaling pathways. Philos Trans R Soc Lond B Biol Sci 361: 1545–1564.

    Article  CAS  Google Scholar 

  • Ricci A, Greco S, Mariotta S, Felici L, Bronzetti E, Cavazzana A et al. (2001). Neurotrophins and neurotrophin receptors in human lung cancer. Am J Respir Cell Mol Biol 25: 439–446.

    Article  CAS  Google Scholar 

  • Sawaki M, Ito Y, Tada K, Mizunuma N, Takahashi S, Horikoshi N et al. (2004). Efficacy and safety of trastuzumab as a single agent in heavily pretreated patients with HER-2/neu-overexpressing metastatic breast cancer. Tumori 90: 40–43.

    Article  CAS  Google Scholar 

  • Shen X, Kramer RH . (2004). Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. Am J Pathol 165: 1315–1329.

    Article  CAS  Google Scholar 

  • Tacconelli A, Farina AR, Cappabianca L, Desantis G, Tessitore A, Vetuschi A et al. (2004). TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6: 347–360.

    Article  CAS  Google Scholar 

  • Tagliabue E, Castiglioni F, Ghirelli C, Modugno M, Asnaghi L, Somenzi G et al. (2000). Nerve growth factor cooperates with p185(HER2) in activating growth of human breast carcinoma cells. J Biol Chem 275: 5388–5394.

    Article  CAS  Google Scholar 

  • Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ . (2007). Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer 7: 389–397.

    Article  CAS  Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al. (2002). Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719–726.

    Article  CAS  Google Scholar 

  • Weeraratna AT, Arnold JT, George DJ, DeMarzo A, Isaacs JT . (2000). Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45: 140–148.

    Article  CAS  Google Scholar 

  • Zhu Z, Friess H, diMola FF, Zimmermann A, Graber HU, Korc M et al. (1999). Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 17: 2419–2428.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the excellent technical assistance of Isabelle Lefebvre. This work was supported by la Ligue Nationale Contre le Cancer (Equipe Labellisée 2009), INSERM, le Ministère de l’Education Nationale and la Région Nord/Pas-de-Calais plus the FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Le Bourhis.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagadec, C., Meignan, S., Adriaenssens, E. et al. TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28, 1960–1970 (2009). https://doi.org/10.1038/onc.2009.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.61

Keywords

This article is cited by

Search

Quick links