Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lipid raft-targeted therapy in multiple myeloma

Abstract

Despite recent advances in treatment, multiple myeloma (MM) remains an incurable malignancy. By using in vitro, ex vivo and in vivo approaches, we have identified here that lipid rafts constitute a new target in MM. We have found that the phospholipid ether edelfosine targets and accumulates in MM cell membrane rafts, inducing apoptosis through co-clustering of rafts and death receptors. Raft disruption by cholesterol depletion inhibited drug uptake by tumor cells as well as cell killing. Cholesterol replenishment restored MM cell ability to take up edelfosine and to undergo drug-induced apoptosis. Ceramide addition displaced cholesterol from rafts, and inhibited edelfosine-induced apoptosis. In an MM animal model, edelfosine oral administration showed a potent in vivo antimyeloma activity, and the drug accumulated preferentially and dramatically in the tumor. A decrease in tumor cell cholesterol, a major raft component, inhibited the in vivo antimyeloma action of edelfosine and reduced drug uptake by the tumor. The results reported here provide the proof-of-principle and rationale for further clinical evaluation of edelfosine and for this raft-targeted therapy to improve patient outcome in MM. Our data reveal cholesterol-containing lipid rafts as a novel and efficient therapeutic target in MM, opening a new avenue in cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Auer J, Berent R, Weber T, Eber B . (2002). Clinical significance of pleiotropic effects of statins: lipid reduction and beyond. Curr Med Chem 9: 1831–1850.

    Article  CAS  PubMed  Google Scholar 

  • Ausili A, Torrecillas A, Aranda FJ, Mollinedo F, Gajate C, Corbalan-Garcia S et al. (2008). Edelfosine is incorporated into rafts and alters their organization. J Phys Chem B 112: 11643–11654.

    Article  CAS  PubMed  Google Scholar 

  • Barnes K, Ingram JC, Bennett MD, Stewart GW, Baldwin SA . (2004). Methyl-beta-cyclodextrin stimulates glucose uptake in Clone 9 cells: a possible role for lipid rafts. Biochem J 378: 343–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Prieto MJ, Campanero MA, Mollinedo F . (2004). Quantitative determination of the antitumor alkyl ether phospholipid edelfosine by reversed-phase liquid chromatography-electrospray mass spectrometry: application to cell uptake studies and characterization of drug delivery systems. J Chromatogr B Analyt Technol Biomed Life Sci 810: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Busto JV, del Canto-Jañez E, Goñi FM, Mollinedo F, Alonso A . (2008). Combination of the anti-tumour cell ether lipid edelfosine with sterols abolishes haemolytic side effects of the drug. J Chem Biol 1: 89–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng PC, Dykstra ML, Mitchell RN, Pierce SK . (1999). A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med 190: 1549–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian AE, Haynes MP, Phillips MC, Rothblat GH . (1997). Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38: 2264–2272.

    CAS  PubMed  Google Scholar 

  • de Mendoza AE, Campanero MA, de la Iglesia-Vicente J, Gajate C, Mollinedo F, Blanco-Prieto MJ . (2009). Antitumor alkyl ether lipid edelfosine: tissue distribution and pharmacokinetic behavior in healthy and tumor-bearing immunosuppressed mice. Clin Cancer Res 15: 858–864.

    Article  Google Scholar 

  • Dessi S, Batetta B, Pulisci D, Spano O, Anchisi C, Tessitore L et al. (1994). Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer. Cancer 73: 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Dimberg LY, Dimberg AI, Ivarsson K, Stromberg T, Osterborg A, Nilsson K et al. (2005). Ectopic and IFN-induced expression of Fas overcomes resistance to Fas-mediated apoptosis in multiple myeloma cells. Blood 106: 1346–1354.

    Article  CAS  PubMed  Google Scholar 

  • Elahi MM, Cagampang FR, Anthony FW, Curzen N, Ohri SK, Hanson MA . (2008). Statin treatment in hypercholesterolemic pregnant mice reduces cardiovascular risk factors in their offspring. Hypertension 51: 939–944.

    Article  CAS  PubMed  Google Scholar 

  • Freeman MR, Solomon KR . (2004). Cholesterol and prostate cancer. J Cell Biochem 91: 54–69.

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Del Canto-Janez E, Acuna AU, Amat-Guerri F, Geijo E, Santos-Beneit AM et al. (2004). Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200: 353–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajate C, Fonteriz RI, Cabaner C, Alvarez-Noves G, Alvarez-Rodriguez Y, Modolell M et al. (2000a). Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Int J Cancer 85: 674–682.

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Gonzalez-Camacho F, Mollinedo F . (2009a). Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS ONE 4: e5044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gajate C, Gonzalez-Camacho F, Mollinedo F . (2009b). Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochem Biophys Res Commun 380: 780–784.

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F . (2001). The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98: 3860–3863.

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F . (2002). Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH3 (edelfosine), a proapoptotic agent in tumor cells. Curr Drug Metab 3: 491–525.

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F . (2005). Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280: 11641–11647.

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F . (2007). Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109: 711–719.

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Santos-Beneit AM, Macho A, Lazaro M, Hernandez-De Rojas A, Modolell M et al. (2000b). Involvement of mitochondria and caspase-3 in ET-18-OCH3-induced apoptosis of human leukemic cells. Int J Cancer 86: 208–218.

    Article  CAS  PubMed  Google Scholar 

  • Grassme H, Cremesti A, Kolesnick R, Gulbins E . (2003). Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22: 5457–5470.

    Article  CAS  PubMed  Google Scholar 

  • Hanson PK, Malone L, Birchmore JL, Nichols JW . (2003). Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J Biol Chem 278: 36041–36050.

    Article  CAS  PubMed  Google Scholar 

  • Harder T, Scheiffele P, Verkade P, Simons K . (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141: 929–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hope HR, Pike LJ . (1996). Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol Biol Cell 7: 843–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein MA, Juturi JV, Lieberman I . (2002). Multiple myeloma: present and future. Curr Opin Oncol 14: 31–35.

    Article  PubMed  Google Scholar 

  • Jasinska M, Owczarek J, Orszulak-Michalak D . (2007). Statins: a new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol Rep 59: 483–499.

    CAS  PubMed  Google Scholar 

  • Karasavvas N, Erukulla RK, Bittman R, Lockshin R, Zakeri Z . (1996). Stereospecific induction of apoptosis in U937 cells by N-octanoyl-sphingosine stereoisomers and N-octyl-sphingosine. The ceramide amide group is not required for apoptosis. Eur J Biochem 236: 729–737.

    Article  CAS  PubMed  Google Scholar 

  • Koga T, Shimada Y, Kuroda M, Tsujita Y, Hasegawa K, Yamazaki M . (1990). Tissue-selective inhibition of cholesterol synthesis in vivo by pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Biochim Biophys Acta 1045: 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Kolanjiappan K, Ramachandran CR, Manoharan S . (2003). Biochemical changes in tumor tissues of oral cancer patients. Clin Biochem 36: 61–65.

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Park MJ, Ye SK, Kim CW, Kim YN . (2006). Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168: 1107–1118; quiz 1404-1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megha, London E . (2004). Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279: 9997–10004.

    Article  CAS  PubMed  Google Scholar 

  • Mihelic R, Kaufman JL, Lonial S . (2007). Maintenance therapy in multiple myeloma. Leukemia 21: 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  • Mollinedo F . (2007). Antitumor ether lipids: proapoptotic agents with multiple therapeutic indications. Expert Opin Ther Pat 17: 385–405.

    Article  CAS  Google Scholar 

  • Mollinedo F . (2008). Myeloma Therapy. Pursuing The Plasma Cell. Lonial S (ed). Humana Press: Totowa, NJ, pp Chapter 25, pp. 393–419.

    Book  Google Scholar 

  • Mollinedo F, Fernandez-Luna JL, Gajate C, Martin-Martin B, Benito A, Martinez-Dalmau R et al. (1997). Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-XL . Cancer Res 57: 1320–1328.

    CAS  PubMed  Google Scholar 

  • Mollinedo F, Gajate C . (2006a). Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9: 51–73.

    Article  CAS  PubMed  Google Scholar 

  • Mollinedo F, Gajate C . (2006b). Fas Signaling. Wajant H (ed). Landes Bioscience and Springer Science: Georgetown, TX, pp Chapter 2, pp 13–27.

    Book  Google Scholar 

  • Mollinedo F, Gajate C, Martin-Santamaria S, Gago F . (2004). ET-18-OCH3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr Med Chem 11: 3163–3184.

    Article  CAS  PubMed  Google Scholar 

  • Mollinedo F, Gajate C, Morales AI, del Canto-Janez E, Justies N, Collia F et al. (2009). Novel anti-inflammatory action of edelfosine lacking toxicity with protective effect in experimental colitis. J Pharmacol Exp Ther 329: 439–449.

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Miguel T, Gajate C, Mollinedo F . (2006). Differential targets and subcellular localization of antitumor alkyl-lysophospholipid in leukemic versus solid tumor cells. J Biol Chem 281: 14833–14840.

    Article  CAS  PubMed  Google Scholar 

  • Nybond S, Bjorkqvist YJ, Ramstedt B, Slotte JP . (2005). Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains. Biochim Biophys Acta 1718: 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Sala D, Collado-Escobar D, Mollinedo F . (1995). Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem 270: 6235–6242.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Sala D, Mollinedo F . (1994). Inhibition of isoprenoid biosynthesis induces apoptosis in human promyelocytic HL-60 cells. Biochem Biophys Res Commun 199: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  • Quesada E, Delgado J, Gajate C, Mollinedo F, Acuna AU, Amat-Guerri F . (2004). Fluorescent phenylpolyene analogues of the ether phospholipid edelfosine for the selective labeling of cancer cells. J Med Chem 47: 5333–5335.

    Article  CAS  PubMed  Google Scholar 

  • Rouquette-Jazdanian AK, Pelassy C, Breittmayer JP, Aussel C . (2007). Full CD3/TCR activation through cholesterol-depleted lipid rafts. Cell Signal 19: 1404–1418.

    Article  CAS  PubMed  Google Scholar 

  • Schon A, Freire E . (1989). Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1. Biochemistry 28: 5019–5024.

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D . (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39.

    Article  CAS  Google Scholar 

  • Tosi MR, Tugnoli V . (2005). Cholesteryl esters in malignancy. Clin Chim Acta 359: 27–45.

    Article  CAS  PubMed  Google Scholar 

  • Zerp SF, Vink SR, Ruiter GA, Koolwijk P, Peters E, van der Luit AH et al. (2008). Alkylphospholipids inhibit capillary-like endothelial tube formation in vitro: antiangiogenic properties of a new class of antitumor agents. Anticancer Drugs 19: 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR . (2005). Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest 115: 959–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Ministerio de Ciencia e Innovación (SAF2007-61261, SAF2008-02251, PCT-090100-2007-27, RD06/0020/1037 from Red Temática de Investigación Cooperativa en Cáncer, Instituto de Salud Carlos III), Fondo de Investigación Sanitaria and European Commission (FIS-FEDER 06/0813, PS09/01915), Junta de Castilla y León (GR15-Experimental Therapeutics and Translational Oncology Program, and Biomedicine Project 2009) and Caja Navarra Foundation, Department of Health of the Navarra Government (‘Ortiz de Landázuri, 2009’ project). CG is supported by the Ramón y Cajal Program from the Ministerio de Ciencia e Innovación of Spain. AEHdM is supported by a research grant (BF106.37) from the Department of Education of the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Mollinedo or C Gajate.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollinedo, F., de la Iglesia-Vicente, J., Gajate, C. et al. Lipid raft-targeted therapy in multiple myeloma. Oncogene 29, 3748–3757 (2010). https://doi.org/10.1038/onc.2010.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.131

Keywords

This article is cited by

Search

Quick links