Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylation by polo-like kinase 1 induces the tumor-suppressing activity of FADD

Abstract

Phosphorylation of the Fas-associated death domain (FADD) protein sensitizes cancer cells to various chemotherapeutics. However, the molecular mechanism underlying chemosensitization by phosphorylated FADD (P-FADD) is poorly understood. In this study, we describe the physical interactions and functional interplay between Polo-like kinase 1 (Plk1) and FADD. Plk1 phosphorylates FADD at Ser-194 in response to treatment with taxol. Overexpression of a phosphorylation-mimicking mutant, FADD S194D, caused degradation of Plk1 in an ubiquitin-independent manner, and delayed cytokinesis, consistent with the expected cellular phenotype of Plk1 deficiency. This demonstrates that Plk1 is regulated via a negative feedback loop by its substrate, FADD. Overexpression of FADD S194D sensitized HeLa cells to a low dose of taxol independently of caspase activation, whereas overexpression of FADD S194D resulted in caspase activation in response to a high dose of taxol. Therefore, we examined whether the death potential of P-FADD affected Plk1-mediated tumorigenesis. Transfection of FADD S194D inhibited colony formation by Plk1-overexpressing HeLa cells (HeLa-Plk1). Moreover, overexpression of FADD S194D suppressed tumorigenesis in nude mice xenografted with HeLa-Plk1. Therefore, this study reports the first in vivo validation of tumor-suppressing activity of P-FADD. Collectively, our data demonstrate that in response to taxol, Plk1 endows death-promoting and tumor-suppressor functions to its substrate, FADD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE et al. (2005). Phosphorylation of FADD at serine 194 by CK1alpha regulates its nonapoptotic activities. Mol Cell 19: 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH . (2002). Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277: 44236–44243.

    Article  CAS  PubMed  Google Scholar 

  • Barr FA, Silljé HH, Nigg EA . (2004). Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5: 429–440.

    Article  CAS  PubMed  Google Scholar 

  • Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ . (2004). Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady SC, Allan LA, Clarke PR . (2005). Regulation of caspase 9 through phosphorylation by protein kinase C zeta in response to hyperosmotic stress. Mol Cell Biol 25: 10543–10555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng KY, Lowe ED, Sinclair J, Nigg EA, Johnson LN . (2003). The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J 22: 5757–5768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdary DR, Dermody JJ, Jha KK, Ozer HL . (1994). Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol Cell Biol 14: 1997–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckerdt F, Strebhardt K . (2006). Polo-like kinase 1: target and regulator of anaphase-promoting complex/cyclosome-dependent proteolysis. Cancer Res 66: 6895–6898.

    Article  CAS  PubMed  Google Scholar 

  • Eckerdt F, Yuan J, Strebhardt K . (2005). Polo-like kinases and oncogenesis. Oncogene 24: 267–276.

    Article  CAS  PubMed  Google Scholar 

  • Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N et al. (2004). Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279: 21085–21095.

    Article  CAS  PubMed  Google Scholar 

  • Gilmartin AG, Bleam MR, Richter MC, Erskine SG, Kruger RG, Madden L et al. (2009). Distinct concentration-dependent effects of the polo-like kinase 1-specific inhibitor GSK461364A, including differential effect on apoptosis. Cancer Res 69: 6969–6977.

    Article  CAS  PubMed  Google Scholar 

  • Gumireddy K, Reddy MV, Cosenza SC, Boominathan R, Baker SJ, Papathi N et al. (2005). ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7: 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Jang MS, Sul JW, Choi BJ, Lee SJ, Suh JH, Kim NS et al. (2008). Negative feedback regulation of Aurora-A via phosphorylation of Fas-associated factor-1. J Biol Chem 283: 32344–32351.

    Article  CAS  PubMed  Google Scholar 

  • Jariel-Encontre I, Bossis G, Piechaczyk M . (2008). Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta 1786: 153–177.

    CAS  PubMed  Google Scholar 

  • Jiang Y, Woronicz JD, Liu W, Goeddel DV . (1999). Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283: 543–546.

    Article  CAS  PubMed  Google Scholar 

  • Juo P, Woo MS, Kuo CJ, Signorelli P, Biemann HP, Hannun YA et al. (1999). FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ 10: 797–804.

    CAS  PubMed  Google Scholar 

  • Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S . (1998). Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol 143: 1353–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khwaja A, Tatton L . (1999). Resistance to the cytotoxic effects of tumor necrosis factor alpha can be overcome by inhibition of a FADD/caspase-dependent signaling pathway. J Biol Chem 274: 36817–36823.

    Article  CAS  PubMed  Google Scholar 

  • Krelin Y, Zhang L, Kang TB, Appel E, Kovalenko A, Wallach D . (2008). Caspase-8 deficiency facilitates cellular transformation in vitro. Cell Death Differ 15: 1350–1355.

    Article  CAS  PubMed  Google Scholar 

  • Lahav G . (2008). Oscillations by the p53-Mdm2 feedback loop. Adv Exp Med Biol 641: 28–38.

    Article  CAS  PubMed  Google Scholar 

  • Lindon C, Pines J . (2004). Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J Cell Biol 164: 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Lei M, Erikson RL . (2006). Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol 26: 2093–2108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu LY, Wood JL, Minter-Dykhouse K, Ye L, Saunders TL, Yu X et al. (2008). Polo-like kinase 1 is essential for early embryonic development and tumor suppression. Mol Cell Biol 28: 6870–6876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüschen S, Falk M, Scherer G, Ussat S, Paulsen M, Adam-Klages S . (2005). The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK. Exp Cell Res 310: 33–42.

    Article  PubMed  Google Scholar 

  • Matsuyoshi S, Shimada K, Nakamura M, Ishida E, Konishi N . (2006). FADD phosphorylation is critical for cell cycle regulation in breast cancer cells. Br J Cancer 94: 532–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima H, Toyoshima-Morimoto F, Taniguchi E, Nishida E . (2003). Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J Biol Chem 278: 25277–25280.

    Article  CAS  PubMed  Google Scholar 

  • Park MY, Ryu SW, Kim KD, Lim JS, Lee ZW, Kim E . (2005). Fas-associated factor-1 mediates chemotherapeutic-induced apoptosis via death effector filament formation. Int J Cancer 115: 412–418.

    Article  CAS  PubMed  Google Scholar 

  • Peter ME, Scaffidi C, Medema JP, Kischkel F, Krammer PH . (1999). The death receptors. Results Probl Cell Differ 23: 25–63.

    Article  CAS  PubMed  Google Scholar 

  • Preisinger C, Körner R, Wind M, Lehmann WD, Kopajtich R, Barr FA . (2005). Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signaling. EMBO J 24: 753–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J et al. (2009). BI 6727, a Polo-like kinase inhibitor with improved pharmacolinetic profile and broad antitumor activity. Clin Cancer Res 15: 3094–3102.

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi C, Volkland J, Blomberg I, Hoffmann I, Krammer PH, Peter ME . (2000). Phosphorylation of FADD/MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J Immunol 164: 1236–1242.

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Kishi M, Konishi N . (2004). Phosphorylation of FADD is critical for sensitivity to anticancer drug-induced apoptosis. Carcinogenesis 25: 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Konishi N . (2005). Phosphorylation status of Fas-associated death domain-containing protein (FADD) is associated with prostate cancer progression. J Pathol 206: 423–432.

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S, Konishi N . (2002). Phosphorylation of Fas-associated death domain contributes to enhancement of etoposide-induced apoptosis in prostate cancer cells. Jpn J Cancer Res 93: 1164–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MR, Wilson ML, Hamanaka R, Chase D, Kung H, Longo DL et al. (1997). Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 234: 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Steegmaier M, Hoffmann M, Baum A, Lénárt P, Petronczki M, Krssák M et al. (2007). BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 17: 316–322.

    Article  CAS  PubMed  Google Scholar 

  • Strebhardt K, Ullrich A . (2006). Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I . (2005). Polo-like kinases (Plks) and cancer. Oncogene 24: 287–291.

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe T, van Loo G, Saelens X, Van Gurp M, Brouckaert G, Kalai M et al. (2004). Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J Biol Chem 279: 7925–7933.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Hou X, Mohapatra S, Ma Y, Cress WD, Pledger WJ et al. (2005). Activation of p27Kip1 Expression by E2F1. A negative feedback mechanism. J Biol Chem 280: 12339–12343.

    Article  CAS  PubMed  Google Scholar 

  • Wang TH, Wang HS, Soong YK . (2000). Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 88: 2619–2628.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, He L, Feng X, Kapoor A, Tang D . (2009). Specific reduction of fas-associated protein with death domain (FADD) in clear cell renal cell carcinoma. Cancer Invest 27: 836–843.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Wang HG . (2006). Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol 26: 569–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Goto H, Yokoyama T, Silljé H, Hanisch A, Uldschmid A et al. (2005). Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J Cell Biol 171: 431–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Zhu RQ, Fang Z, Xia D, Diao LM, Liu MQ . (2005). Expression and mutation of Fas-associated death domain (FADD) gene in non-small cell lung cancer. Ai Zheng 24: 321–326.

    CAS  PubMed  Google Scholar 

  • Yoo NJ, Lee SH, Jeong EG, Lee JW, Soung YH, Nam SW et al. (2007). Expression of nuclear and cytoplasmic phosphorylated FADD in gastric cancers. Pathol Res Pract 203: 73–78.

    Article  CAS  PubMed  Google Scholar 

  • Zhande R, Dauphinee SM, Thomas JA, Yamamoto M, Akira S, Karsan A . (2007). FADD negatively regulates lipopolysaccharide signaling by impairing interleukin-1 receptor-associated kinase 1-MyD88 interaction. Mol Cell Biol 27: 7394–7404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li Y, Guo L, Cao R, Zhao P, Jiang W et al. (2009). DH166, a beta-carboline derivative, inhibits the kinase activity of PLK1. Cancer Biol Ther 8: 2374–2383.

    Article  CAS  PubMed  Google Scholar 

  • Zhou XM, Liu Y, Payne G, Lutz RJ, Chittenden T . (2000). Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J Biol Chem 275: 25046–25051.

    Article  CAS  PubMed  Google Scholar 

  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB . (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18: 1272–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (FG09-21-02) from the 21C Frontier Functional Human Genome Project, by a grant (CMB34-A2300-01-00-00) from the Center for Biological Modulators of the 21st Century Frontier R&D Program and by the National Research foundation (2009-0093957) at the Ministry of Education, Science and Technology in Korea. We thank Dr Soojin Lee (Department of Microbiology, Chungnam National University, Daejeon, Korea) for assistance with the colony formation studies, and Byung-Jung Choi (Medical Genomics Research Center, KRIBB, Daejeon, Korea) for assistance with the FPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, MS., Lee, SJ., Kim, CJ. et al. Phosphorylation by polo-like kinase 1 induces the tumor-suppressing activity of FADD. Oncogene 30, 471–481 (2011). https://doi.org/10.1038/onc.2010.423

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.423

Keywords

This article is cited by

Search

Quick links