Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Keratins in health and cancer: more than mere epithelial cell markers

Abstract

Keratins are the intermediate filament (IF)-forming proteins of epithelial cells. Since their initial characterization almost 30 years ago, the total number of mammalian keratins has increased to 54, including 28 type I and 26 type II keratins. Keratins are obligate heteropolymers and, similarly to other IFs, they contain a dimeric central α-helical rod domain that is flanked by non-helical head and tail domains. The 10-nm keratin filaments participate in the formation of a proteinaceous structural framework within the cellular cytoplasm and, as such, serve an important role in epithelial cell protection from mechanical and non-mechanical stressors, a property extensively substantiated by the discovery of human keratin mutations predisposing to tissue-specific injury and by studies in keratin knockout and transgenic mice. More recently, keratins have also been recognized as regulators of other cellular properties and functions, including apico-basal polarization, motility, cell size, protein synthesis and membrane traffic and signaling. In cancer, keratins are extensively used as diagnostic tumor markers, as epithelial malignancies largely maintain the specific keratin patterns associated with their respective cells of origin, and, in many occasions, full-length or cleaved keratin expression (or lack there of) in tumors and/or peripheral blood carries prognostic significance for cancer patients. Quite intriguingly, several studies have provided evidence for active keratin involvement in cancer cell invasion and metastasis, as well as in treatment responsiveness, and have set the foundation for further exploration of the role of keratins as multifunctional regulators of epithelial tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Anderson JM, Heindl LM, Bauman PA, Ludi CW, Dalton WS, Cress AE . (1996). Cytokeratin expression results in a drug-resistant phenotype to six different chemotherapeutic agents. Clin Cancer Res 2: 97–105.

    CAS  PubMed  Google Scholar 

  • Ashkenazi A . (2008). Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7: 1001–1012.

    CAS  PubMed  Google Scholar 

  • Ausch C, Buxhofer-Ausch V, Olszewski U, Hinterberger W, Ogris E, Schiessel R et al. (2009). Caspase-cleaved cytokeratin 18 fragment (M30) as marker of postoperative residual tumor load in colon cancer patients. Eur J Surg Oncol 35: 1164–1168.

    CAS  PubMed  Google Scholar 

  • Baribault H, Penner J, Iozzo RV, Wilson-Heiner M . (1994). Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev 8: 2964–2973.

    CAS  PubMed  Google Scholar 

  • Baribault H, Price J, Miyai K, Oshima RG . (1993). Mid-gestational lethality in mice lacking keratin 8. Genes Dev 7: 1191–1202.

    CAS  PubMed  Google Scholar 

  • Baribault H, Wilson-Heiner M, Muller W, Penner J, Bakhiet N . (1997). Functional analysis of mouse keratin 8 in polyoma middle T-induced mammary gland tumours. Transgenic Res 6: 359–367.

    CAS  PubMed  Google Scholar 

  • Bauman PA, Dalton WS, Anderson JM, Cress AE . (1994). Expression of cytokeratin confers multiple drug resistance. Proc Natl Acad Sci USA 91: 5311–5314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beil M, Micoulet A, von Wichert G, Paschke S, Walther P, Omary MB et al. (2003). Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat Cell Biol 5: 803–811.

    CAS  PubMed  Google Scholar 

  • Bluemke K, Bilkenroth U, Meye A, Fuessel S, Lautenschlaeger C, Goebel S et al. (2009). Detection of circulating tumor cells in peripheral blood of patients with renal cell carcinoma correlates with prognosis. Cancer Epidemiol Biomarkers Prev 18: 2190–2194.

    CAS  PubMed  Google Scholar 

  • Bonifas JM, Rothman AL, Epstein Jr EH . (1991). Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. Science 254: 1202–1205.

    CAS  PubMed  Google Scholar 

  • Bragulla HH, Homberger DG . (2009). Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214: 516–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buning C, Halangk J, Dignass A, Ockenga J, Deindl P, Nickel R et al. (2004). Keratin 8 Y54H and G62C mutations are not associated with inflammatory bowel disease. Dig Liver Dis 36: 388–391.

    CAS  PubMed  Google Scholar 

  • Casanova ML, Bravo A, Martinez-Palacio J, Fernandez-Acenero MJ, Villanueva C, Larcher F et al. (2004). Epidermal abnormalities and increased malignancy of skin tumors in human epidermal keratin 8-expressing transgenic mice. FASEB J 18: 1556–1558.

    CAS  PubMed  Google Scholar 

  • Casanova ML, Bravo A, Ramirez A, Morreale de Escobar G, Were F, Merlino G et al. (1999). Exocrine pancreatic disorders in transsgenic mice expressing human keratin 8. J Clin Invest 103: 1587–1595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavestro GM, Frulloni L, Nouvenne A, Neri TM, Calore B, Ferri B et al. (2003). Association of keratin 8 gene mutation with chronic pancreatitis. Dig Liver Dis 35: 416–420.

    CAS  PubMed  Google Scholar 

  • Chan R, Rossitto PV, Edwards BF, Cardiff RD . (1986). Presence of proteolytically processed keratins in the culture medium of MCF-7 cells. Cancer Res 46: 6353–6359.

    CAS  PubMed  Google Scholar 

  • Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK et al. (2008). Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14: 1368–1376.

    CAS  PubMed  Google Scholar 

  • Chen N, Gong J, Chen X, Xu M, Huang Y, Wang L et al. (2009). Cytokeratin expression in malignant melanoma: potential application of in-situ hybridization analysis of mRNA. Melanoma Res 19: 87–93.

    CAS  PubMed  Google Scholar 

  • Chu P, Wu E, Weiss LM . (2000). Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 13: 962–972.

    CAS  PubMed  Google Scholar 

  • Chu PG, Weiss LM . (2002a). Expression of cytokeratin 5/6 in epithelial neoplasms: an immunohistochemical study of 509 cases. Mod Pathol 15: 6–10.

    PubMed  Google Scholar 

  • Chu PG, Weiss LM . (2002b). Keratin expression in human tissues and neoplasms. Histopathology 40: 403–439.

    CAS  PubMed  Google Scholar 

  • Chu YW, Runyan RB, Oshima RG, Hendrix MJ . (1993). Expression of complete keratin filaments in mouse L cells augments cell migration and invasion. Proc Natl Acad Sci USA 90: 4261–4265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu YW, Seftor EA, Romer LH, Hendrix MJ . (1996). Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am J Pathol 148: 63–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coulombe PA, Hutton ME, Letai A, Hebert A, Paller AS, Fuchs E . (1991). Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66: 1301–1311.

    CAS  PubMed  Google Scholar 

  • Coulombe PA, Omary MB . (2002). ‘Hard‘ and ‘soft‘ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14: 110–122.

    CAS  PubMed  Google Scholar 

  • Cress AE, Roberts RA, Bowden GT, Dalton WS . (1988). Modification of keratin by the chemotherapeutic drug mitoxantrone. Biochem Pharmacol 37: 3043–3046.

    CAS  PubMed  Google Scholar 

  • Felder E, Siebenbrunner M, Busch T, Fois G, Miklavc P, Walther P et al. (2008). Mechanical strain of alveolar type II cells in culture: changes in the transcellular cytokeratin network and adaptations. Am J Physiol Lung Cell Mol Physiol 295: L849–L857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fickert P, Trauner M, Fuchsbichler A, Stumptner C, Zatloukal K, Denk H . (2003). Mallory body formation in primary biliary cirrhosis is associated with increased amounts and abnormal phosphorylation and ubiquitination of cytokeratins. J Hepatol 38: 387–394.

    CAS  PubMed  Google Scholar 

  • Fields AP, Regala RP . (2007). Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 55: 487–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortier AM, Van Themsche C, Asselin E, Cadrin M . (2010). Akt isoforms regulate intermediate filament protein levels in epithelial carcinoma cells. FEBS Lett 584: 984–988.

    CAS  PubMed  Google Scholar 

  • Fuchs E, Cleveland DW . (1998). A structural scaffolding of intermediate filaments in health and disease. Science 279: 514–519.

    CAS  PubMed  Google Scholar 

  • Gilbert S, Loranger A, Daigle N, Marceau N . (2001). Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154: 763–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glotzer M . (2009). The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10: 9–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalvez F, Ashkenazi A . (2010). New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29: 4752–4765.

    CAS  PubMed  Google Scholar 

  • Habtezion A, Toivola DM, Butcher EC, Omary MB . (2005). Keratin-8-deficient mice develop chronic spontaneous Th2 colitis amenable to antibiotic treatment. J Cell Sci 118: 1971–1980.

    CAS  PubMed  Google Scholar 

  • Hammer E, Bien S, Salazar MG, Steil L, Scharf C, Hildebrandt P et al. (2010). Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Proteomics 10: 99–114.

    CAS  PubMed  Google Scholar 

  • Harada M, Strnad P, Toivola DM, Omary MB . (2008). Autophagy modulates keratin-containing inclusion formation and apoptosis in cell culture in a context-dependent fashion. Exp Cell Res 314: 1753–1764.

    CAS  PubMed  Google Scholar 

  • He T, Stepulak A, Holmstrom TH, Omary MB, Eriksson JE . (2002). The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J Biol Chem 277: 10767–10774.

    CAS  PubMed  Google Scholar 

  • Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R et al. (2001). Gene-expression profiles in hereditary breast cancer. N Engl J Med 344: 539–548.

    CAS  PubMed  Google Scholar 

  • Hembrough TA, Vasudevan J, Allietta MM, Glass II WF, Gonias SL . (1995). A cytokeratin 8-like protein with plasminogen-binding activity is present on the external surfaces of hepatocytes, HepG2 cells and breast carcinoma cell lines. J Cell Sci 108 (Part 3): 1071–1082.

    CAS  PubMed  Google Scholar 

  • Hendrix MJ, Seftor EA, Seftor RE, Trevor KT . (1997). Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol 150: 483–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U . (2007). Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8: 562–573.

    CAS  PubMed  Google Scholar 

  • Herrmann H, Strelkov SV, Burkhard P, Aebi U . (2009). Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119: 1772–1783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez BY, Frierson HF, Moskaluk CA, Li YJ, Clegg L, Cote TR et al. (2005). CK20 and CK7 protein expression in colorectal cancer: demonstration of the utility of a population-based tissue microarray. Hum Pathol 36: 275–281.

    CAS  PubMed  Google Scholar 

  • Ignatiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafousi M et al. (2007). Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol 25: 5194–5202.

    PubMed  Google Scholar 

  • Irvine AD, Corden LD, Swensson O, Swensson B, Moore JE, Frazer DG et al. (1997). Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann's corneal dystrophy. Nat Genet 16: 184–187.

    CAS  PubMed  Google Scholar 

  • Iwaya K, Ogawa H, Mukai Y, Iwamatsu A, Mukai K . (2003). Ubiquitin-immunoreactive degradation products of cytokeratin 8/18 correlate with aggressive breast cancer. Cancer Sci 94: 864–870.

    CAS  PubMed  Google Scholar 

  • Jaitovich A, Mehta S, Na N, Ciechanover A, Goldman RD, Ridge KM . (2008). Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J Biol Chem 283: 25348–25355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao WW, Liu CY, Converse RL, Shiraishi A, Kao CW, Ishizaki M et al. (1996). Keratin 12-deficient mice have fragile corneal epithelia. Invest Ophthalmol Vis Sci 37: 2572–2584.

    CAS  PubMed  Google Scholar 

  • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S et al. (2007). Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: 1621–1635.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karantza-Wadsworth V, White E . (2008). A mouse mammary epithelial cell model to identify molecular mechanisms regulating breast cancer progression. Methods Enzymol 446: 61–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuragi K, Yashiro M, Sawada T, Osaka H, Ohira M, Hirakawa K . (2007). Prognostic impact of PCR-based identification of isolated tumour cells in the peritoneal lavage fluid of gastric cancer patients who underwent a curative R0 resection. Br J Cancer 97: 550–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Wong P, Coulombe PA . (2006). A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441: 362–365.

    CAS  PubMed  Google Scholar 

  • Knosel T, Emde V, Schluns K, Schlag PM, Dietel M, Petersen I . (2006). Cytokeratin profiles identify diagnostic signatures in colorectal cancer using multiplex analysis of tissue microarrays. Cell Oncol 28: 167–175.

    PubMed  PubMed Central  Google Scholar 

  • Kongara S, Kravchuk O, Teplova I, Lozy F, Schulte J, Moore D et al. (2010). Autophagy regulates keratin 8 homeostasis in mammary epithelial cells and in breast tumors. Mol Cancer Res 8: 873–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Azhar S, Omary MB . (2002a). Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J Biol Chem 277: 10775–10782.

    CAS  PubMed  Google Scholar 

  • Ku NO, Darling JM, Krams SM, Esquivel CO, Keeffe EB, Sibley RK et al. (2003a). Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies. Proc Natl Acad Sci USA 100: 6063–6068.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Gish R, Wright TL, Omary MB . (2001). Keratin 8 mutations in patients with cryptogenic liver disease. N Engl J Med 344: 1580–1587.

    CAS  PubMed  Google Scholar 

  • Ku NO, Michie S, Oshima RG, Omary MB . (1995). Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J Cell Biol 131: 1303–1314.

    CAS  PubMed  Google Scholar 

  • Ku NO, Michie S, Resurreccion EZ, Broome RL, Omary MB . (2002b). Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc Natl Acad Sci USA 99: 4373–4378.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Omary MB . (2000). Keratins turn over by ubiquitination in a phosphorylation-modulated fashion. J Cell Biol 149: 547–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Omary MB . (2006). A disease- and phosphorylation-related nonmechanical function for keratin 8. J Cell Biol 174: 115–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Soetikno RM, Omary MB . (2003b). Keratin mutation in transgenic mice predisposes to Fas but not TNF-induced apoptosis and massive liver injury. Hepatology 37: 1006–1014.

    CAS  PubMed  Google Scholar 

  • Ku NO, Strnad P, Zhong BH, Tao GZ, Omary MB . (2007). Keratins let liver live: mutations predispose to liver disease and crosslinking generates Mallory–Denk bodies. Hepatology 46: 1639–1649.

    CAS  PubMed  Google Scholar 

  • Ku NO, Wright TL, Terrault NA, Gish R, Omary MB . (1997). Mutation of human keratin 18 in association with cryptogenic cirrhosis. J Clin Invest 99: 19–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Zhou X, Toivola DM, Omary MB . (1999). The cytoskeleton of digestive epithelia in health and disease. Am J Physiol 277: G1108–G1137.

    CAS  PubMed  Google Scholar 

  • Lane EB, McLean WH . (2004). Keratins and skin disorders. J Pathol 204: 355–366.

    CAS  PubMed  Google Scholar 

  • Lane EB, Rugg EL, Navsaria H, Leigh IM, Heagerty AH, Ishida-Yamamoto A et al. (1992). A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature 356: 244–246.

    CAS  PubMed  Google Scholar 

  • Lehr HA, Folpe A, Yaziji H, Kommoss F, Gown AM . (2000). Cytokeratin 8 immunostaining pattern and E-cadherin expression distinguish lobular from ductal breast carcinoma. Am J Clin Pathol 114: 190–196.

    CAS  PubMed  Google Scholar 

  • Liao J, Ku NO, Omary MB . (1997). Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at Ser-73 in tissues and cultured cells. J Biol Chem 272: 17565–17573.

    CAS  PubMed  Google Scholar 

  • Linder S, Olofsson MH, Herrmann R, Ulukaya E . (2010). Utilization of cytokeratin-based biomarkers for pharmacodynamic studies. Expert Rev Mol Diagn 10: 353–359.

    CAS  PubMed  Google Scholar 

  • Liu F, Chen Z, Wang J, Shao X, Cui Z, Yang C et al. (2008a). Overexpression of cell surface cytokeratin 8 in multidrug-resistant MCF-7/MX cells enhances cell adhesion to the extracellular matrix. Neoplasia 10: 1275–1284.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Fan D, Qi J, Zhu H, Zhou Y, Yang C et al. (2008b). Co-expression of cytokeratin 8 and breast cancer resistant protein indicates a multifactorial drug-resistant phenotype in human breast cancer cell line. Life Sci 83: 496–501.

    CAS  PubMed  Google Scholar 

  • Liu L, Qian J, Singh H, Meiers I, Zhou X, Bostwick DG . (2007). Immunohistochemical analysis of chromophobe renal cell carcinoma, renal oncocytoma, and clear cell carcinoma: an optimal and practical panel for differential diagnosis. Arch Pathol Lab Med 131: 1290–1297.

    PubMed  Google Scholar 

  • Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E et al. (1995). The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J Cell Biol 129: 1329–1344.

    CAS  PubMed  Google Scholar 

  • Loranger A, Duclos S, Grenier A, Price J, Wilson-Heiner M, Baribault H et al. (1997). Simple epithelium keratins are required for maintenance of hepatocyte integrity. Am J Pathol 151: 1673–1683.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magin TM, Schroder R, Leitgeb S, Wanninger F, Zatloukal K, Grund C et al. (1998). Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J Cell Biol 140: 1441–1451.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashukova A, Oriolo AS, Wald FA, Casanova ML, Kroger C, Magin TM et al. (2009). Rescue of atypical protein kinase C in epithelia by the cytoskeleton and Hsp70 family chaperones. J Cell Sci 122: 2491–2503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matros E, Bailey G, Clancy T, Zinner M, Ashley S, Whang E et al. (2006). Cytokeratin 20 expression identifies a subtype of pancreatic adenocarcinoma with decreased overall survival. Cancer 106: 693–702.

    CAS  PubMed  Google Scholar 

  • McGregor DK, Wu TT, Rashid A, Luthra R, Hamilton SR . (2004). Reduced expression of cytokeratin 20 in colorectal carcinomas with high levels of microsatellite instability. Am J Surg Pathol 28: 712–718.

    PubMed  Google Scholar 

  • Meng Y, Wu Z, Yin X, Zhao Y, Chen M, Si Y et al. (2009). Keratin 18 attenuates estrogen receptor alpha-mediated signaling by sequestering LRP16 in cytoplasm. BMC Cell Biol 10: 96.

    PubMed  PubMed Central  Google Scholar 

  • Mertz KD, Demichelis F, Sboner A, Hirsch MS, Dal Cin P, Struckmann K et al. (2008). Association of cytokeratin 7 and 19 expression with genomic stability and favorable prognosis in clear cell renal cell cancer. Int J Cancer 123: 569–576.

    CAS  PubMed  Google Scholar 

  • Mizuuchi E, Semba S, Kodama Y, Yokozaki H . (2009). Down-modulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression. Int J Cancer 124: 1802–1810.

    CAS  PubMed  Google Scholar 

  • Moll R, Divo M, Langbein L . (2008). The human keratins: biology and pathology. Histochem Cell Biol 129: 705–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R . (1982). The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24.

    CAS  PubMed  Google Scholar 

  • Moll R, Lowe A, Laufer J, Franke WW . (1992). Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 140: 427–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moll R, Schiller DL, Franke WW . (1990). Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J Cell Biol 111: 567–580.

    CAS  PubMed  Google Scholar 

  • Na N, Chandel NS, Litvan J, Ridge KM . (2010). Mitochondrial reactive oxygen species are required for hypoxia-induced degradation of keratin intermediate filaments. FASEB J 24: 799–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E . (2004). Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev 18: 2095–2107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikitakis NG, Tosios KI, Papanikolaou VS, Rivera H, Papanicolaou SI, Ioffe OB . (2004). Immunohistochemical expression of cytokeratins 7 and 20 in malignant salivary gland tumors. Mod Pathol 17: 407–415.

    PubMed  Google Scholar 

  • Obermajer N, Doljak B, Kos J . (2009). Cytokeratin 8 ectoplasmic domain binds urokinase-type plasminogen activator to breast tumor cells and modulates their adhesion, growth and invasiveness. Mol Cancer 8: 88.

    PubMed  PubMed Central  Google Scholar 

  • Omary MB, Coulombe PA, McLean WH . (2004). Intermediate filament proteins and their associated diseases. N Engl J Med 351: 2087–2100.

    CAS  PubMed  Google Scholar 

  • Omary MB, Ku NO, Liao J, Price D . (1998). Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell Biochem 31: 105–140.

    CAS  PubMed  Google Scholar 

  • Omary MB, Ku NO, Strnad P, Hanada S . (2009). Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 119: 1794–1805.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omary MB, Ku NO, Tao GZ, Toivola DM, Liao J . (2006). ‘Heads and tails’ of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 31: 383–394.

    CAS  PubMed  Google Scholar 

  • Oriolo AS, Wald FA, Ramsauer VP, Salas PJ . (2007). Intermediate filaments: a role in epithelial polarity. Exp Cell Res 313: 2255–2264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters B, Kirfel J, Bussow H, Vidal M, Magin TM . (2001). Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol Biol Cell 12: 1775–1789.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard TD, Cooper JA . (2009). Actin, a central player in cell shape and movement. Science 326: 1208–1212.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan RA, Cohlberg JA, Schiller DL, Hatzfeld M, Franke WW . (1984). Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells. J Mol Biol 178: 365–388.

    CAS  PubMed  Google Scholar 

  • Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou YH, Omary MB et al. (2005). Keratin 8 phosphorylation by protein kinase C delta regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J Biol Chem 280: 30400–30405.

    CAS  PubMed  Google Scholar 

  • Riopel CL, Butt I, Omary MB . (1993). Method of cell handling affects leakiness of cell surface labeling and detection of intracellular keratins. Cell Motil Cytoskeleton 26: 77–87.

    CAS  PubMed  Google Scholar 

  • Rolli CG, Seufferlein T, Kemkemer R, Spatz JP . (2010). Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach. PLoS One 5: e8726.

    PubMed  PubMed Central  Google Scholar 

  • Schmitz-Winnenthal FH, Volk C, Helmke B, Berger S, Hinz U, Koch M et al. (2006). Expression of cytokeratin-20 in pancreatic cancer: an indicator of poor outcome after R0 resection. Surgery 139: 104–108.

    PubMed  Google Scholar 

  • Schutte B, Henfling M, Kolgen W, Bouman M, Meex S, Leers MP et al. (2004). Keratin 8/18 breakdown and reorganization during apoptosis. Exp Cell Res 297: 11–26.

    CAS  PubMed  Google Scholar 

  • Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM et al. (2006). New consensus nomenclature for mammalian keratins. J Cell Biol 174: 169–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaramakrishnan S, DeGiulio JV, Lorand L, Goldman RD, Ridge KM . (2008). Micromechanical properties of keratin intermediate filament networks. Proc Natl Acad Sci USA 105: 889–894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaramakrishnan S, Schneider JL, Sitikov A, Goldman RD, Ridge KM . (2009). Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C zeta. Mol Biol Cell 20: 2755–2765.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith F . (2003). The molecular genetics of keratin disorders. Am J Clin Dermatol 4: 347–364.

    PubMed  Google Scholar 

  • Soeth E, Grigoleit U, Moellmann B, Roder C, Schniewind B, Kremer B et al. (2005). Detection of tumor cell dissemination in pancreatic ductal carcinoma patients by CK 20 RT–PCR indicates poor survival. J Cancer Res Clin Oncol 131: 669–676.

    PubMed  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey SN, Sulem P, Masson G, Gudjonsson SA, Thorleifsson G, Jakobsdottir M et al. (2009). New common variants affecting susceptibility to basal cell carcinoma. Nat Genet 41: 909–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefansson IM, Salvesen HB, Akslen LA . (2006). Loss of p63 and cytokeratin 5/6 expression is associated with more aggressive tumors in endometrial carcinoma patients. Int J Cancer 118: 1227–1233.

    CAS  PubMed  Google Scholar 

  • Steinert PM, Marekov LN, Parry DA . (1993). Conservation of the structure of keratin intermediate filaments: molecular mechanism by which different keratin molecules integrate into preexisting keratin intermediate filaments during differentiation. Biochemistry 32: 10046–10056.

    CAS  PubMed  Google Scholar 

  • Strnad P, Zhou Q, Hanada S, Lazzeroni LC, Zhong BH, So P et al. (2010). Keratin variants predispose to acute liver failure and adverse outcome: race and ethnic associations. Gastroenterology 139: 828–835, 835 e1–e3.

    CAS  PubMed  Google Scholar 

  • Styers ML, Kowalczyk AP, Faundez V . (2005). Intermediate filaments and vesicular membrane traffic: the odd couple's first dance? Traffic 6: 359–365.

    CAS  PubMed  Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT et al. (2005). Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1: 15–30.

    CAS  PubMed  Google Scholar 

  • Takahashi K, Paladini RD, Coulombe PA . (1995). Cloning and characterization of multiple human genes and cDNAs encoding highly related type II keratin 6 isoforms. J Biol Chem 270: 18581–18592.

    CAS  PubMed  Google Scholar 

  • Toivola DM, Ku NO, Resurreccion EZ, Nelson DR, Wright TL, Omary MB . (2004). Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease. Hepatology 40: 459–466.

    CAS  PubMed  Google Scholar 

  • Toivola DM, Nakamichi I, Strnad P, Michie SA, Ghori N, Harada M et al. (2008). Keratin overexpression levels correlate with the extent of spontaneous pancreatic injury. Am J Pathol 172: 882–892.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toivola DM, Strnad P, Habtezion A, Omary MB . (2010). Intermediate filaments take the heat as stress proteins. Trends Cell Biol 20: 79–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB . (2005). Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15: 608–617.

    CAS  PubMed  Google Scholar 

  • Toivola DM, Zhou Q, English LS, Omary MB . (2002). Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol Biol Cell 13: 1857–1870.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treiber M, Schulz HU, Landt O, Drenth JP, Castellani C, Real FX et al. (2006). Keratin 8 sequence variants in patients with pancreatitis and pancreatic cancer. J Mol Med 84: 1015–1022.

    CAS  PubMed  Google Scholar 

  • Uenishi T, Yamazaki O, Tanaka H, Takemura S, Yamamoto T, Tanaka S et al. (2008). Serum cytokeratin 19 fragment (CYFRA21-1) as a prognostic factor in intrahepatic cholangiocarcinoma. Ann Surg Oncol 15: 583–589.

    PubMed  Google Scholar 

  • Ulukaya E, Yilmaztepe A, Akgoz S, Linder S, Karadag M . (2007). The levels of caspase-cleaved cytokeratin 18 are elevated in serum from patients with lung cancer and helpful to predict the survival. Lung Cancer 56: 399–404.

    PubMed  Google Scholar 

  • van den IP, Norman DG, Quinlan RA . (1999). Molecular chaperones: small heat shock proteins in the limelight. Curr Biol 9: R103–R105.

    Google Scholar 

  • van de Rijn M, Perou CM, Tibshirani R, Haas P, Kallioniemi O, Kononen J et al. (2002). Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161: 1991–1996.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayaraj P, Kroger C, Reuter U, Windoffer R, Leube RE, Magin TM . (2009). Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J Cell Biol 187: 175–184.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayaraj P, Sohl G, Magin TM . (2007). Keratin transgenic and knockout mice: functional analysis and validation of disease-causing mutations. Methods Mol Biol 360: 203–251.

    CAS  PubMed  Google Scholar 

  • Wang J, Chan JY, Fong CC, Tzang CH, Fung KP, Yang M . (2009). Transcriptional analysis of doxorubicin-induced cytotoxicity and resistance in human hepatocellular carcinoma cell lines. Liver Int 29: 1338–1347.

    PubMed  Google Scholar 

  • Weckermann D, Polzer B, Ragg T, Blana A, Schlimok G, Arnholdt H et al. (2009). Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J Clin Oncol 27: 1549–1556.

    PubMed  Google Scholar 

  • Winter H, Langbein L, Praetzel S, Jacobs M, Rogers MA, Leigh IM et al. (1998). A novel human type II cytokeratin, K6hf, specifically expressed in the companion layer of the hair follicle. J Invest Dermatol 111: 955–962.

    CAS  PubMed  Google Scholar 

  • Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P et al. (2003). Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63: 5679–5684.

    CAS  PubMed  Google Scholar 

  • Woelfle U, Sauter G, Santjer S, Brakenhoff R, Pantel K . (2004). Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clin Cancer Res 10: 2670–2674.

    CAS  PubMed  Google Scholar 

  • Woll S, Windoffer R, Leube RE . (2007). p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells. J Cell Biol 177: 795–807.

    PubMed  PubMed Central  Google Scholar 

  • Xenidis N, Ignatiadis M, Apostolaki S, Perraki M, Kalbakis K, Agelaki S et al. (2009). Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol 27: 2177–2184.

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Ibusuki M, Nakano M, Kawasoe T, Hiki R, Iwase H . (2009). Clinical significance of basal-like subtype in triple-negative breast cancer. Breast Cancer 16: 260–267.

    PubMed  Google Scholar 

  • Yang XR, Xu Y, Shi GM, Fan J, Zhou J, Ji Y et al. (2008). Cytokeratin 10 and cytokeratin 19: predictive markers for poor prognosis in hepatocellular carcinoma patients after curative resection. Clin Cancer Res 14: 3850–3859.

    CAS  PubMed  Google Scholar 

  • Yano S, Komine M, Fujimoto M, Okochi H, Tamaki K . (2004). Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J Invest Dermatol 122: 783–790.

    CAS  PubMed  Google Scholar 

  • Yaziji H, Battifora H, Barry TS, Hwang HC, Bacchi CE, McIntosh MW et al. (2006). Evaluation of 12 antibodies for distinguishing epithelioid mesothelioma from adenocarcinoma: identification of a three-antibody immunohistochemical panel with maximal sensitivity and specificity. Mod Pathol 19: 514–523.

    CAS  PubMed  Google Scholar 

  • Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A et al. (2001). Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61: 5168–5178.

    CAS  PubMed  Google Scholar 

  • Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM et al. (2007). From Mallory to Mallory–Denk bodies: what, how and why? Exp Cell Res 313: 2033–2049.

    CAS  PubMed  Google Scholar 

  • Zatloukal K, Stumptner C, Lehner M, Denk H, Baribault H, Eshkind LG et al. (2000). Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies. Am J Pathol 156: 1263–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R00CA133181 and a Damon Runyon Clinical Investigator Award (VK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Karantza.

Ethics declarations

Competing interests

The author declares no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karantza, V. Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30, 127–138 (2011). https://doi.org/10.1038/onc.2010.456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.456

Keywords

This article is cited by

Search

Quick links